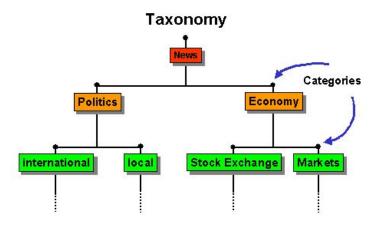
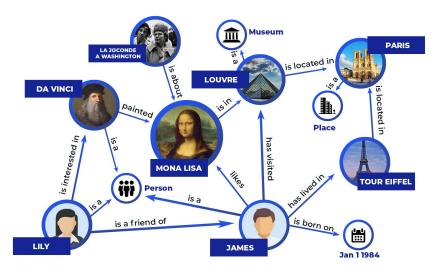
T7: Tech-Taxonomy with a Text To Text Transfer Transformer

You Zuo (Almanach, Inria), Kim Gerdes (Lisn, Upsay, ISS, Inria)


ALMAnaCH project-team Seminar - 22/10/2021


Outline

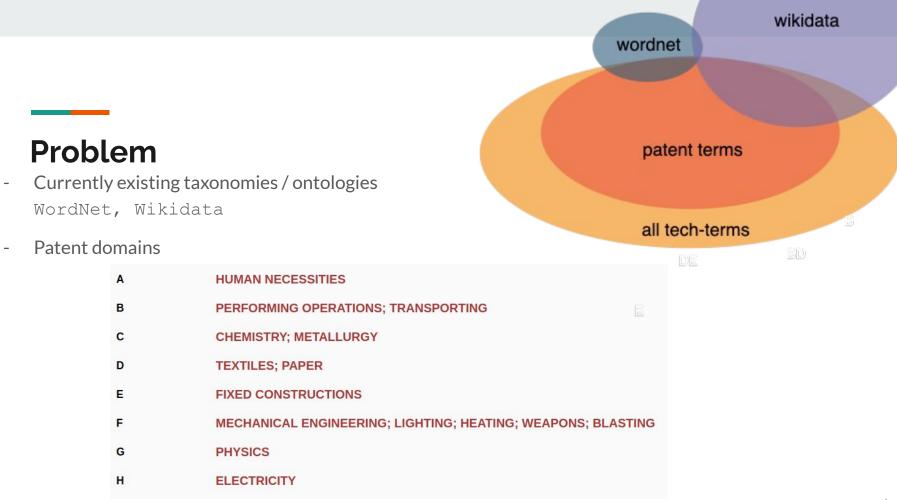
- 1. INTRODUCTION
 - what is tech-taxonomy?
 - what does qatent.com do?
 - why do we need tech-taxonomy?
- 2. METHODS
- 3. EVALUATION
- 4. CONCLUSION
- 5. Q&A

Introduction

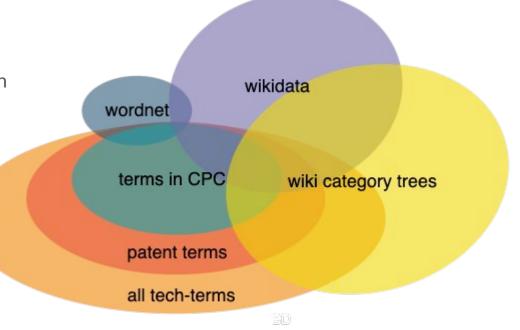
- Definition of taxonomy
- Taxonomy vs. ontology/ knowledge graph

Introduction

- Web application for drafting patents


- Patent description generator
- Patent application validator
- Why do we need tech-taxonomy?
 - patent

•


Technical Terms General (Hypernym) Specific (Hyponym)

Problems

Currently existing taxonomies / ontologies
 WordNet ⇒ too general !
 Wikidata ⇒ unrelated items: celebrities, locations, events or no information about hypernym

 Cooperative Patent Classification (CPC) classification system + Wikipedia Category trees

7

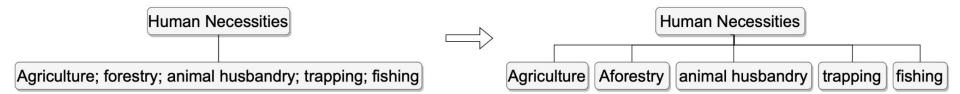
Totally 262K categories in CPC!!

CPC classification system

Hierarchy

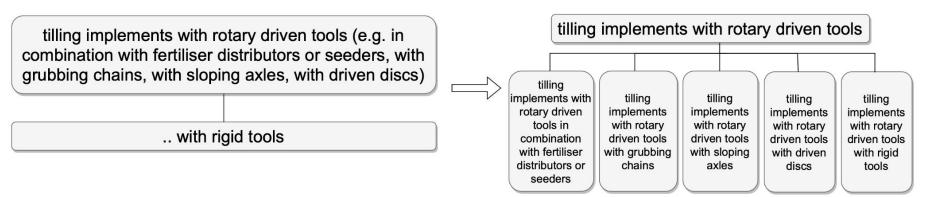
- Section (one letter A to H and also Y)
 - Class (two digits)
 - Subclass (one letter)
 - Group (one to three digits)
 - subgroup (at least two digits)

Totally 262K categories in CPC!!


CPC classification system

example "A01B33/02"

- Section A => Human Necessities
 - **Class 01 =>** Agriculture; forestry; animal husbandry; trapping; fishing
 - Subclass B => Soil working in agriculture or forestry, parts, details, or accessories of agricultural machines or implements, in general (making or covering furrows or holes for sowing, planting, or manuring A01C5/00; soil working for engineering purposes E01, E02, E21; measuring areas for agricultural purposes G01B)
 - **Group 33** => tilling implements with rotary driven tools (e.g. in combination with fertiliser distributors or seeders, with grubbing chains, with sloping axles, with driven discs)
 - Subgroup 02 => ... with rigid tools


example "A01B33/02"

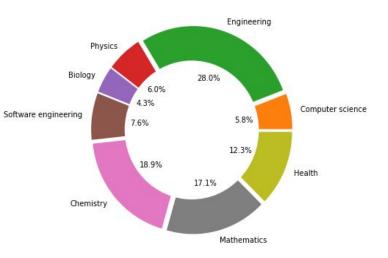
- Section A => Human Necessities
 - **Class 01** => Agriculture; forestry; animal husbandry; trapping; fishing

example "A01B33/02"

- **Group 33** => tilling implements with rotary driven tools (e.g. in combination with fertiliser distributors or seeders, with grubbing chains, with sloping axles, with driven discs)
 - **Subgroup 02** => ... with rigid tools

308K nodes retrieved finally !

Parse analysis by Alma Parias García


• Wikipedia Category trees

Extracted Wikipedia Category Trees under eight domains:

- Physics
- Biólogy
- Mathematics
- Engineering
- Computer Science
- Health
- Chemistry
- Software Engineering

- ▼ Artificial intelligence (40 C, 411 P)
 - Affective computing (1 C, 7 P)
 - ► AI accelerators (10 P)
 - Artificial intelligence applications (16 C, 148 P)
 - Argument technology (1 C, 18 P)
 - Artificial immune systems (5 P)
 - Artificial intelligence associations (1 C, 23 P)
 - Automated reasoning (3 C, 12 P)
 - Chatbots (41 P)
 - Cloud robotics (4 P)
 - Cognitive architecture (35 P)
 - ▼ Computer vision (21 C, 108 P)
 - ▼ 3D imaging (7 C, 144 P, 1 F)
 - ▼ 3D computer graphics (16 C, 144 P, 1 F)
 - ▼ 3D graphic artifacts (1 C, 3 P)
 - ▼ 3D printed objects (2 C, 11 P)
 - ▶ 3D printed firearms (21 P)
 - ► 3D graphics models (8 P)
 - ► 3D graphics APIs (2 C, 20 P)
 - ► 3D graphics art (1 C, 6 P)
 - ▶ 3D graphics file formats (19 P)
 - ► 3D graphics software (11 C, 258 P)
 - ▶ 3D rendering (2 C, 48 P)
 - ▶ DirectX (35 P)
 - Graphical projections (1 C, 13 P)
 - ▶ 3D graphics models (8 P)
 - ▶ OpenGL (1 C, 39 P)

Category	Number of terms	Number of cleaned terms		
Physics	57752	1032		
Health	51137	2121		
Software Engineering	47262	1307		
Computer Science	21098	991		
Chemistry	33854	3246		
Mathematics	65019	2935		
Biology	76470	737		
Engineering	46932	4816		
Total	399521	17185		

Distribution by topic of Wikipedia Category Trees

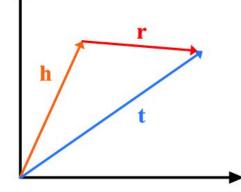
Number of terms for each Wikipedia Category Tree

Cooperative Patent Classification (CPC) classification system
 + Wikipedia Category trees
 ⇒ 339k nodes in our tech-taxonomy

Evaluation

- Human evaluation
- models for hypernym prediction
 - CRIM (Bernier-Colborne & Barrière, 2018)
 - TransE (Bordes et al., 2013)
 - hypo2hyper (Cho et al., 2020)
 - T5 (Raffel et al., 2020)

Models for hypernym prediction

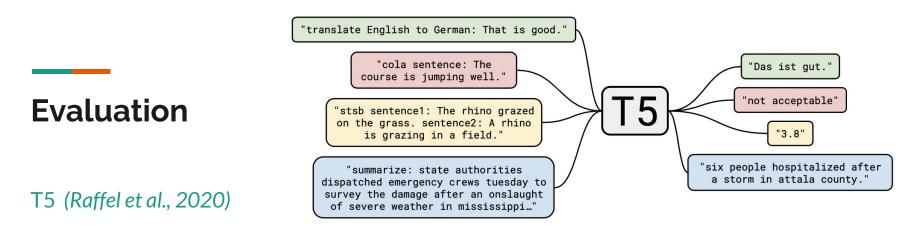

CRIM (Bernier-Colborne & Barrière, 2018) Ranked 1st in SemEval 2018 Task 9

- Learning Projection matrices from query embedding ⇒ target hypernym embeddings
- fastText as term representation (OOV, rare/ unfamiliar words)

Link prediction model

TransE (Bordes et al., 2013)

- Relationships are represented as translations in the embedding space
- if (h, r, t) holds, then h+r≅t


Hypernym prediction as sequence to sequence task

hypo2hyper (Cho et al., 2020)

- LSTM-based seq2seq model with Luong attention (Luong et al., 2015)

	Hyponym Generated hypernym path		Gold hypernym
1	pizza.n.01	$\underline{\text{dish.n.02}} \rightarrow \text{nutriment.n.01} \rightarrow \text{food.n.01} \rightarrow \ldots \rightarrow \text{entity.n.01}$	dish.n.02
1	alps.n.01	range.n.04 \rightarrow geological_formation.n.01 $\rightarrow \ldots \rightarrow$ entity.n.01	range.n.04
1	whisper.v.01	$\overline{\text{talk.v.02}} \rightarrow \text{communicate.v.02} \rightarrow \text{interact.v.01} \rightarrow \text{act.v.01}$	talk.v.02
X	proletarian.n.01	* <u>worker.n.01</u> \rightarrow person.n.01 \rightarrow causal_agent.n.01 $\rightarrow \rightarrow$ entity.n.01	commoner.n.01
×	austerity.n.01	*punishment.n.01 \rightarrow social_control.n.01 $\rightarrow \rightarrow$ entity.n.01	self-discipline.n.01
×	compulsive.n.01	* $\overline{\text{sick}_{\text{person.n.01}}} \rightarrow \text{unfortunate.n.01} \rightarrow \text{person.n.01} \rightarrow \dots \rightarrow \text{entity.n.01}$	person.n.01

Table 1: We frame hypernym prediction as a sequence generation problem. Given a query hyponym (e.g., *pizza.n.01*), the *hypo2path rev* model generates its taxonomy path, from its direct hypernym (*dish.n.02*) to the root node (*entity.n.01*). \checkmark and \varkappa indicate a correct and an incorrect prediction, respectively. In each example, an underlined synset corresponds to what the model predicted as a direct hypernym.

- Text to Text Transfer Transformer

Evaluation

Metrics

- Hits@k score percentage of correct true labels that appeared in the top k (k=1, 3, 10) ranked predictions
- Mean reciprocal rank (MRR) the position of the first correct results in ranked list of outcomes

$$MRR = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{1}{rank_i}$$

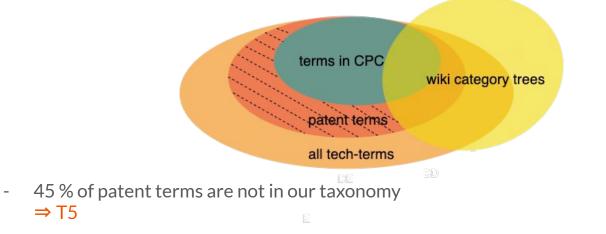
Results

Table 12. Results on test set of Qatent Taxonomy (incomplete)

MODEL	H@1	H@3	H@10	MRR
CLOSET VECTOR	9.49	17.61	28.26	15.57
CRIM TransE hypo2hyper T5	10.99 37.82 11.04 61.00	20.48 55.25 21.03 68.35	31.57 69.64 30.18 79.10	17.68 48.39 17.45 70.43

Results

- many potential terms that have not been included in our taxonomy


 \Rightarrow Term recognizer used in qatent:

8. The method of 1, further comprising: in response to displaying the scrollable refresh trigger, providing first audio feedback; and in response to determining that the scrollable

- 45 % of patent terms are not in our taxonomy

Results

- many potential terms that have not been included in our taxonomy

Ongoing and Future Work

- Semi-supervised method to correct taxonomy extracted from CPC Using model trained on wikipedia category trees as a filter ⇒ eg. keep terms if in the top 10
- 2. Try different pre-trained transformers: GPT-NeoX
- 3. Expand patent terms by implementing Hearst patterns in patent and technical wikipedia pages: Y such as X, Y other than X, not all Y are X, Y including X, Y especially X, Y like X, Y for example X, Y which includes X, X are also Y, X are all Y

Conclusion

- Taxonomies are not dead, still useful for paraphrase generation, intelligent editors
- Non-trivial task to develop domain-specific taxonomies

Our attempt: Term recognizer (span Categorizer + NER from spaCy) + T5 ⇒ taxonomy completion

Q & A

Thank you for your attention!

Reference

- Bernier-Colborne, G. and Barrière, C. CRIM at SemEval-2018 task 9: A hybrid approach to hypernym discovery. In Proceedings of The 12th International Workshop on Semantic Evaluation, pp. 725–731, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/S18-1116.
- Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and Yakhnenko, O.Translating embeddings for modeling multi-relational data. In Burges, C.J. C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K. Q. (eds.), Advances in Neural Information Processing Systems, volume 26. Curran Associates, Inc., 2013.
- Camacho-Collados, J., Delli Bovi, C., Espinosa-Anke, L.,Oramas, S., Pasini, T., Santus, E., Shwartz, V., Navigli, R., and Saggion, H.
 SemEval-2018 task 9: Hypernym discovery. In Proceedings of The 12th International Workshop on Semantic Evaluation, pp. 712–724, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/S18-1115.
- Cho, Y., Rodriguez, J. D., Gao, Y., and Erk, K. Lever-aging WordNet paths for neural hypernym prediction. In Proceedings of the 28th International Conference on Computational Linguistics, pp. 3007–3018, Barcelona, Spain (Online), December 2020. International Committee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.268.

Reference

- Martin Kracker. European patent information and the cpc taxonomy as linkedopen data. InSEMANTICS Posters&Demos, 2018.
- Tung Tran and Ramakanth Kavuluru. Supervised approaches to assign cooperative patent classification (cpc) codes to patents. In MIKE, 2017.
- George A Miller. Wordnet: a lexical database for english.Communications of the ACM, 38(11):39–41, 1995.
- Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring the limits of transfer learning with a unified text-to-text transformer, 2020.