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SEMANTIC PARSING

SQL parsing

> Input: sentence

> Qutput: SQL query

I want to book a flight from Paris to Rome.

\

SELECT * FROM flight WHERE from = "paris" AND to = "rome"

Abstract Meaning Representation (AMR) parsing

> Input: sentence

> Qutput: graph ARG
instance

instance

The boy want to go. #

want-01

instance go-01

boy 3



REENTRANCY-FREE SEMANTIC PARSING

Reentrancy-free semantic structures

> Predicates and entities are typed (in the same sense than in “typed programming languages")
> An argument can only be used once

Semantic structures look like a simple instruction in a functional programming language.

What rivers do not run through Tennesse?

\

exclude ( river all , traverse 2 ( stateid('Tennesse') ) )

Is this realistic?
"estimating that there are only 0.3% queries that would require a more general [..] representation."

Task Oriented Parsing (TOP) dataset [Gupta et al., 2018]



COMPOSITIONAL GENERALIZATION

Compositionality: "the meaning of a complex expression is constructed from
the meanings of its constituent parts" (Kim & Linzen, 2020)

Compositional generalization: "Once a person learns the meaning of a new verb dax, he or
she can immediately understand the meaning of dax twice
or sing and dax." (Lake & Baroni, 2018)
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GRAPH-BASED SEMANTIC PARSING



SYNTACTIC PARSING: CONSTITUENCY PARSING

NP V‘P T I \

They walk the dog What should T do?

Constituency parsing complexity with formal grammars

o Context-free grammars O(n>) [Sakai, 1961]
Bp O

g
= o Well-nested LCFRS with a fan-out of 2 O(n®)
= [GOmez-Rodriguez et al., 2010]
E’ = Well-nested LCFRS with a fan-out of k, k > 2 O(n*+?)
—_ QO

LCFRS with bounded fan-out NP-hard [Satta, 1992]



SYNTACTIC PARSING: CONSTITUENCY PARSING

NP NP
| ‘ e WH|N : T

They walk the dog

What should I do?

Constituency parsing complexity with formal grammars

0 Context-free grammars O(n>) [Sakai, 1961]
o0
= §* Well-nested LCFRS with a fan-out of 2 O(n®)
= [GOmez-Rodriguez et al., 2010]
‘g = Well-nested LCFRS with a fan-out of k, k > 2 O(n*+?)
—_ QO

’ LCFRS with bounded fan-out NP-hard [Satta, 1992]

Constituency parsing complexity with span-based parsers

» Ensure the well-formedness of the resulting structure

> Do not enforce compliance of the syntactic content represented by the structure
(e.g. a verbal phrase is not constrained to contain a verb)

Similar complexity than formal grammar parsers [Stern et al., 2017] [Corro, 2020] 7



SPAN-BASED SEMANTIC PARSING [Herzig & Berant, 2021]

Outline

> Use a span-based constituency parser for semantic parsing
(with extra valency constraints)

> Show that it is more robust to compositional generalization than seq-2-seq models

join: capital (loc_2 (state (next_to_1(NY)))
/——/-’—\

() join: capital (loc_2 (state (next_to_1 (NY)))
capm (next_to_1(NY)))
lomxt_to_l (NY) )
join: m_to_l (NY)
S ——

state ¢ stateid(’'new york’) Join:next_to_l1

T~
‘ next_to_1 ¢
| |

What, is; thes capital, of 5 Statess that; News Yorky bordersio 21




SPAN-BASED SEMANTIC PARSING [Herzig & Berant, 2021]

Limitation

The parser allows only a limited form of discontinuity that can be parsed in O(n®) [Corro, 2020]

Join : most(state(loc_1(major(city_all))))

/\

join : most(state(loc_1(major(city_all))))

/\

join : state(loc_1(major(city_all))) :
_— I
join : loc_1(major(city_all)) '

-

join : major(city_all)

|
: /\
join : loc_1 | join : city_all
N | N

() state loc_1 () most major city_all

What state has the most major cities ?

The constituent in red is discontinuous and also has a discontinuous parent (red+green)
=> outside the search space of the algorithm!



SYNTACTIC PARSING: DEPENDENCY PARSING

ROOT OBJ
* /Th;y\A walk the dog
“~— v
SUBJ DET

Dependency parsing complexity (among many other algorithms!)

Increasing
search space

Projective

Well-nested + 2-bounded block degree
Well-nested + k-bounded block degree, k > 2
k-bounded block degree, k > 2

' Unrestricted (a.k.a. non-projective)

O(n) [Eisner, 2000]

O(n’)

B2 [GOmez-Rodriguez et al. 2009]

NP-complete [Satta, 1992]
""" \

O (nz) i [McDonald et al., 2005]

[Tarjan, 1977]

10



GRAPH-BASED PARSING

Prediction with a graph-based parser

Assume an input sentence with n words:
1. Create a complete directed graph with n vertices
2. Weight all arcs using a neural network

3. Compute the maximum spanning arborescence of the graph

They walk the dog
Very deep neural network

T

They walk the dog.

11



GRAPH-BASED SEMANTIC PARSING

Intuition

The semantic program can be represented by its abstract syntax tree (AST)

=> just predict the AST!

exclude ( river all , traverse 2 ( stateid('Tennesse') ) )

exclude

river all .‘/‘\. traverse 2

@ stateid('Tennesse')

12



GRAPH-BASED SEMANTIC PARSING

Intuition

The semantic program can be represented by its abstract syntax tree (AST)

=> just predict the AST!

exclude ( river all , traverse 2 ( stateid('Tennesse') ) )

exclude

river all .‘/‘\. traverse 2

@ stateid('Tennesse')

Graph-based prediction

Joint tagging (entity+predicate) and parsing (argument identification)
» Non-spanning structure (function words, etc)
> Valency constraints

» Non-projective structure

/\1/\ N

river all exclude traverse_2 stateid

What rivers do not run through Tennesse? 12



GRAPH-BASED SEMANTIC PARSING

Semantic grammar

A semantic grammar is a tuple € = ( E, T, ftypea fargs ) where:

> E is a set of predicates and entities (set of tags)
> T is a set of type
> /i type - E—T is a typing function that assigns a type to each tag

> Jargs : EXT =N is a valency function that assigns the numbers of expected arguments of a given type

AST recognition

A labeled graph is a valid AST if and only if it can be recognized by the grammar &

exclude

river_all traverse_2

@® stateid('Tennesse')

13



GRAPH-BASED SEMANTIC PARSING

Example

E = {exclude, river_all, traverse 1,traverse 2,state id,...} T = {river, state, ...}

exclude

river all ./‘\ I traverse 2

stateid('Tennesse') 14



GRAPH-BASED SEMANTIC PARSING

Example
E = {exclude, river_all,traverse 1,traverse 2,state id,...} T = [river,state, ...)
ftype( river_all) = river
ftype( state id ) = state
Jtype( traverse_2 ) = river
Ttype( exclude ) = river
exclude

river all ./‘\ I traverse 2

stateid('Tennesse') 14



GRAPH-BASED SEMANTIC PARSING

Example
E = {exclude, river_all, traverse 1,traverse 2,state id,...} T = {river,state, ...}
ftype( river_all) = river fargs( river all,...) =0 M
Jtype( state_id ) = state Jargs( state id,...) =0

Jtype( traverse_2 ) = river For all types

ftype( exclude ) = river

exclude

rive:_all traverse_2

stateid (' Tennesse') 14



GRAPH-BASED SEMANTIC PARSING

Example
E = {exclude, river_all, traverse 1,traverse 2,state id,...} T = {river, state, ...}
ftype( river_all) = river fargs( river all,...) =0
ftype( State_id ) = state fargs( State_id, ) = O
Jtype( traverse 2 ) = river fargs( traverse_2, river ) =0
J type( exclude ) = river fargs( traverse 2, state ) = 1
exclude

river all ./‘\ I traverse 2

stateid('Tennesse') 14



GRAPH-BASED SEMANTIC PARSING

Example
E = {exclude, river_all, traverse 1,traverse 2,state id,...} T = {river, state, ...}
Jtype( river_all) = river Jargs( river all,...) =0
Jtype( state_id ) = state fargs( state_id, ...) =0
J type( traverse_2 ) = river fargs( traverse 2, river ) =0
Ji type( exclude ) = river fargs( traverse 2, state ) = 1
Jargs( exclude, river ) =2
Jargs( exclude, state ) =0
exclude

river all ./‘\ I traverse 2

stateid('Tennesse') 14



GRAPH-BASED SEMANTIC PARSING

Example
E = {exclude, river_all, traverse 1,traverse 2,state id,...} T = {river. state, ... )
Jtype( river_all) = river Jargs( river all,...) =0
ftype( state id ) = state fargs( state id,...) =0
Jtype( traverse_2 ) = state fargs( traverse_2, river ) =0
ftype( exclude ) = river fargs( traverse 2, state ) = 1
Jargs( exclude, river ) =2
Invalid AST Jargs( exclude, state ) =0
for this grammar!
exclude

lllllllllllllllllllllllllllllllllll

15



REDUCTION TO A GRAPH PROBLEM

Graph construction

1. For each word, create a cluster

2. In each cluster, create one vertex per element of T
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REDUCTION TO A GRAPH PROBLEM

AST parsing

Compute the rooted arborescence of maximum weight such that:
» There is at most one incident vertex per cluster

» Valency constraints are satisfied

PN Predicate "exclude” is
. @~ associated with word “not"

PN PN

® ' exclude
® . next_to_2
@ 5 5 : : i stateid

. @ 1 Dependencies assign . state_all
L E E arguments 5 ;

@ : : ; : area 1

Which states do not border Texas?
17



NP-HARDNESS

AST parsing

Compute the rooted arborescence of maximum weight such that:
» There is at most one incident vertex per cluster

» Valency constraints are satisfied

Issue

This problem is NP hard! :(
(proof: by reduction of the maximum not-necessarily spanning arborescence problem)

18



NP-HARDNESS

AST parsing

Compute the rooted arborescence of maximum weight such that:
» There is at most one incident vertex per cluster

» Valency constraints are satisfied

Issue

This problem is NP hard! :(
(proof: by reduction of the maximum not-necessarily spanning arborescence problem)

Approximate solver

1. Formulation as a integer linear program
2. Relaxation of the integrality constraint 2€[0,1]“

3. Identifying the difficult constraints s.t. 7z € qg(easy)
and add them as penalties in the objective

4. Custom optimization algorithm based on the problem structure
(indicator function smoothing + Frank-Wolfe)

Valency constraints! 18




ALGORITHME INTUITION

Problem reformulation

To simplify the algorithm, we add "empty entities":

next to 2
stateid
state_all

Q
O
a)
—~
(@)
"
()

cannot have outgoing arcs in a solution

"

» The root must have exactly one outgoing arc to a non-empty entity/predicate

> The "empty entities

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

19

states do not border Texas?

Which



ALGORITHME INTUITION

Input sentence
esS

20



ALGORITHME INTUITION

-----

List

states

state_all

loc_l

In theory, we have all

predicates/entities



ALGORITHME INTUITION
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ALGORITHME INTUITION

Create weights

using the neural

- omom
--------------- -----------.
- -
-
-
-
-- - L
-- -
-~

' 4 1, --
] --- - M M M B O O W E E E W Om o “~
' *-:lli--------------------...__ B T R ..
-y -y ~
' S~y il T i N ~
. WSV s S ., ~
~-.—( ~ - - b

‘
[N RN AR
~
X . .. ~. [N .
8 . ~~ ~ . A Y
. . . ~o A Y A
: . o ~ A ‘
' M | K
. * | |
. ‘\ ] 1
. . " \
. . 1 1
‘ A3 1 1
. ! ; .
' 1 ' :
\‘ ! !
-
[y . ’ :
|\ A !
1} A ! ]
s A ! '
. * ‘ '
. . 4 1
. ¢ ‘ !
L4
A S ‘ !
) ce =] .- . '
1 . -—__---- ---..... ¢ ’
‘ ' ; 11
-~
\ .- -. ‘ state a
N - mmEm e mmmwmmmmom o LR N L Y !
A} S -- 4
‘ S a --" ’
S =" P
A . Y £” % !
‘\ ‘s RS 1 e "
S e
+ M Sa ” g o
. — « ~ - L4 O ’
~ (4
. ~_ L4 4
DG . ’
Y — P ~ ’
. ’ s ‘ !
. ~ .
! ‘'~ ¢ N ¢ !
. ~_ L° S P !
~
A\ ¢~'“ ~Q¢ "
' L4 ~§ ¢‘ ~ 4
A O' ~~~ ¢‘ ~~ L4
\ i4 S Phe hRS ‘
|\ e Sa N 4
~
‘ X4 P ~ — ‘
‘ * .* ~ o ¢
Y L4 - ~ 4
¢ P S a 4
. = '
4 —1 s -~ 4
ps s 3
. - V.

="
-
——

1oc_1

e

-~ -

——

-
-

0 TTTTreeeei D eeeeeen -1

List states
23



ALGORITHME INTUITION

TR \dd vertex weight
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ALGORITHME INTUITION
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ALGORITHME INTUITION

state_all

loc_l

LList states
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ALGORITHME INTUITION

state_all

loc_l

LList states
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ALGORITHME INTUITION
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ALGORITHME INTUITION

—
1.5+1
o o &
‘ B _ state_all
loc 1
Look at the ‘
solution on the
original graph List states

29



ALGORITHME INTUITION

—
1.5+1
o o %
‘ state_all
loc_1 expects P ® loc_1
an argument! :(
List states

30



ALGORITHME INTUITION
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ALGORITHME INTUITION
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ALGORITHME INTUITION

state_all

loc_l

LList states
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ALGORITHME INTUITION

state_all

loc_l

LList states
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ALGORITHME INTUITION
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ALGORITHME INTUITION

-----

‘ state_all

36



ALGORITHME INTUITION

We need to remove
empty entities

state_all

37



ALGORITHME INTUITION

state_all

This is a valid AST!
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SUPERVISED LEARNING
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NEGATIVE LOG-LIKELIHOOD

Notations

> Search space: directed graph G = (V, A) where V is the set of verticesand A C V XV is the set of arcs
> Vertex selection vector: x € {0,1}"
> Arc selection vector: y € {0,1 %
> Set of feasible solution (i.e. set of ASTs): (X,y) € €

Weight vectors

> Vertex weights: u € RY
> Arc weights: ¢ € RA

40



NEGATIVE LOG-LIKELIHOOD

Notations

> Search space: directed graph G = (V, A) where V is the set of verticesand A C V XV is the set of arcs
> Vertex selection vector: x € {0,1}"
> Arc selection vector: y € {0,1 %
> Set of feasible solution (i.e. set of ASTs): (X,y) € €

Weight vectors

> Vertex weights: u € RY
> Arc weights: ¢ € RA

Boltzmann distribution over ASTs Log-partition function

{exp( Xy + (b y) — e ) ) if(xy) EB
0

DX y) = .
o otherwise,

where  c(u,¢)=log ) exp ((wX) +(¢.y))

x,y)e®€ 40



NEGATIVE LOG-LIKELIHOOD

Boltzmann distribution over ASTs Log-partition function

{exp( . x) + (hy) — ) ) if(xy)EB
0

DX, y) = .
o otherwise,

where  c(u,¢)=log ) exp ((wX) +(¢.y))

x\y)ee€

Negative log-likelihood loss

(probably) intractable!
f(ﬂ? ¢7 X, y) - = lng,u,(/)(X, y) : :

— = </u7X> - <¢9 Y> + c(u, ¢)

/A\ We cannot compute the loss function! :(

41



VARIATIONAL APPROXIMATION

Change of notation
Set of feasible ASTs
X H

zZ = [y] 0 = ¢] F=1{z0,2V, .. 2V}

42



VARIATIONAL APPROXIMATION

Change of notation
Set of feasible ASTs
X

u
zZ = [y] 0 = Lb] F=1{z0,2V, .. 2V}
Upper bound on the log-partition function

c(0) = log Z exp (0, z)
ZEZ
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VARIATIONAL APPROXIMATION

Change of notation
Set of feasible ASTs

U
7 = [;] 0 = Lb] F ={zV,zV, .. 70} Each row is a

feasible AST

Upper bound on the log-partition function

(D)D) (1)
C(@):logZexp <9,Z> SRS ceey Xy
€7 2B, 29, .., P
U= :
= max (p,Ufd) — .log p;
max, (p, U0) Zl: p;logp
B 9, 9, ..., ZP
Fenchel bi-conjugate ) )
(Z(l), 9)
<Z(2), 6’)

U0 = : Weight of each AST

(z®, ) 42




VARIATIONAL APPROXIMATION

Change of notation
Set of feasible ASTs
X

u
zZ = [y] 0 = Lb] F=1{z0,2V, .. 2V}
Upper bound on the log-partition function

c(0) = log Z exp (0,z)

7€Z£

= max (p,U0O) — log p.
peN@ ) Zi:p gp

=H[p]
=max (p'U)6 + H[p]

pef
Marginal distribution
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VARIATIONAL APPROXIMATION

Change of notation
Set of feasible ASTs
X

U
zZ = [y] 0 = [¢] F=1{z0,2V, .. 2V}
Upper bound on the log-partition function

c(0) = log Z exp (0,z)

Z1e€Z
max, {p, UB) Zi:p gp
=H[p]
= max (p'U)0 + H[p]
max (p'U) p

= max (z,0) + Q(z)

zeconv(Z)

Marginal polytope

Implicitly defined so the two
problems are equivalent
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VARIATIONAL APPROXIMATION

Change of notation
Set of feasible ASTs
X

u
zZ = [y] 0 = [¢] F=1{z0,2V, .. 2V}
Upper bound on the log-partition function

c(0) = log Z exp (0,z)

IEF
max, {p, UB) Zi:p gp
=H[p]
= max (p'U)0 + H[p]
max (p'U) p

= max (z,0) + Q(z)

zeconv(Z)

< max (z,0) + H(z) Mean regularization
c

Outer approximation

42



VARIATIONAL APPROXIMATION

Upper bound on the log-partition function c(0) <max (z,0) + H(z) = c(0)
VIS4

We need to choose £ such that the bound is easy to compute.

Note that each feasible solutionin ¢  satisfies the following conditions:
1. Each cluster has exactly one selected vertex

2. Each cluster (except the root) has exactly one incoming arc

I—-.\
: *‘l.n
Yam L |
‘\ .....~
% LI
-~\ s ) '--~\ '--~\ '--~\
' @ E : : ! O
1 | 1 | | | |
1 | 1 | | | |
'@ . ' : : : »  exclude
' : ' : . : : :
1 | 1 | 1 | | |
' @ | : ' @) . ' + next to 2
L : . L L 5
1 1 =
. @ . . @ . @ . ' . + stateid
1 1 ] ] 1 ] 1 1 1 ] 1
1 1 ] ] 1 ] 1 1 1 1 1
1 : ] ] : ] : ] : ] :
'@ . ' . '@ . '@ . ' " ' »  state all
1 [ 1 —
' " ' : ' " : " ' " ' "
. 1 1 1 1 1 1 1 . 1 . 1
@ ! @ @ ! @ @ ! @ ! area 1
A ‘e ‘e ‘e A A -
Which states do not border Texas?
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VARIATIONAL APPROXIMATION

Upper bound on the log-partition function c(0) <max (z,0) + H(z) = c(0)
VIS4

We need to choose £ such that the bound is easy to compute.

Note that each feasible solutionin ¢  satisfies the following conditions:
1. Each cluster has exactly one selected vertex

2. Each cluster (except the root) has exactly one incoming arc

Token-separable negative log-likelihood

Define £  as the convex hull of structures that satisfy (1) and (2),
Then:

l/ﬂ(ﬂa ¢;Xa y) < - </’t7X> o <¢9 Y> + Z:(//h ¢)

is simply a sum of negative log-likelihood losses. For each cluster:
» One NLL over all vertices in the cluster

» One NLL over all incoming arcs in the cluster
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WEAKLY-SUPERVISED LEARNING
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DATASETS

Annotation issue

In most dataset, the entities and predicates are not anchored!

Example
Input: What rivers do not run through Tennesse?
exclude
Output: river all traverse 2

@ stateid('Tennesse')

45



WEAKLY SUPERVISED LOSS

O 5 =—log Y pxy) =-log D exp( (mx)+(hy)—clup))

(X,y)EEC™ (X,y)EC*

= —log 2 exp( (u,X) + (¢, y) ) +  c(u, @)

(X,y)EC*
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WEAKLY SUPERVISED LOSS

O 5 =—log Y pxy) =-log D exp( (mx)+(hy)—clup))

(x,y)e&€* (x,y)e€*

= —log Z exp( (1, x) + (¢, y) ) +  c(p. P)

(x,y)€€6*

Lower bound on the first term

oz 3, exp( () (hy)) = log Y, LED

(X,y)EG* (X,y)EG* X,

exp( (u,X) + (¢, y) )

Proposal distribution
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WEAKLY SUPERVISED LOSS

O 5 =—log Y pxy) =-log D exp( (mx)+(hy)—clup))

(x,y)e&€* (x,y)e€*

= —log Z exp( (1, x) + (¢, y) ) +  c(p. P)

(x,y)€€6*

Lower bound on the first term

oz 3, exp( () (hy)) = log Y, LED

(X,y)EG* (X,y)EG* X,

exp( (u,X) + (¢, y) )

> Y gy log exp( (u,x) +(.y) )

eyl q(X,y)
Jensen’s inequality
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WEAKLY SUPERVISED LOSS

O 5 =—log Y pxy) =-log D exp( (mx)+(hy)—clup))

(X,y)EEC™ (X,y)EC*

=—log ) exp((Lx)+(d.y)) + cu.¢)

(X,y)EC*
Lower bound on the first term

log ) exp( (u.X)+(¢.y) )

(x,y)€€6*

g Y " exp ((wx)+(hy) )

(X y)€<cf€>‘<

eXp( (4, X) + (¢, y) )
Y. q(x.y) log
o q(X,y)

vV

= E, [ (wx) + (¢.y) | + Hlg]
As usual:
» The bound is tight if q is equal to the posterior distribution, "a 1a" EM

» We can instead use a proposal that put all the mass on single value, "a 12" hard EM 46



WEAKLY SUPERVISED LOSS

L EH=—log Y pxy) < E[wx) + (by)] + Hgl + cug)
(X,y)€C*

Hard-EM like optimization

> (E step) Compute the best alignment between vertices in the AST and words in the sentence

> (M step) One gradient step on the neural network parameters

exclude

river_all traverse_2

. stateid('Tennesse')

What rivers do not run through Tennesse?

NP-hardness

The E step is a NP-hard problem => approximate solver based on constraint relaxation
+ dynamic programming 47



EXPERIMENTAL RESULTS
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DATASETS

SCAN: Simplified version of the CommAI Navigation tasks [Lake & Baroni, 2018]

> Input : command

> Qutput : action sequence

Jump = JUMP

jump left = LTURN JUMP

jump around right = RTURN JUMP RTURN JUMP RTURN JUMP RTURN JUMP

turn left twice = LTURN LTURN

jump thrice = JUMP JUMP JUMP

Jump opposite left and walk thrice = LTURN LTURN JUMP WALK WALK WALK

jump opposite left after walk around left
= LTURN WALK LTURN WALK LTURN WALK LTURN WALK LTURN LTURN JUMP

SCAN-SP [Herzig & Berant, 2021]
Variant of scan where outputs are reformulated as functional programs

run around left twice and jump left
= 1 and ( 1 twice ( 1 run ( 1 left , 1 around ) ) , 1 Jump ( 1 left ) )
49



DATASETS

SCAN : IID

Random split of the data

50



DATASETS

SCAN : IID

Random split of the data

SCAN : Right

» The term "right" is never seen without a manner adverbs (around, opposite) during training

» The model must learn to generalize to the simplest usage of right
(as seen during training for "left")

Train Test
Jump left jump right
turn left turn right

Jump around left
jump around right
turn opposite right

turn around left

50



DATASETS

SCAN : IID

Random split of the data

SCAN : Right

» The term "right" is never seen without a manner adverbs (around, opposite) during training

» The model must learn to generalize to the simplest usage of right
(as seen during training for "left")

SCAN : Around right

> Test test set contains all exemple with "around right"

> The train set contains all other examples

Train Test
Jump left jump around right
Jump right turn around right

Jump around left
Jump opposite right
turn opposite right

turn around left 50



DATASETS

SCAN : IID

Random split of the data

SCAN : Right

» The term "right" is never seen without a manner adverbs (around, opposite) during training

» The model must learn to generalize to the simplest usage of right
(as seen during training for "left")

SCAN : Around right

> Test test set contains all exemple with "around right"

> The train set contains all other examples

train dev
IID 13 383 3 345 4 182
Right 12 180 3 045 4 476
ARight 12 180 3 045 4 476 .



DATASETS

GeoQuery

» Input: question related to USA geography

» Output: query that can be executed against a database

what state has the largest city? = answer (state(loc 1(largest(city(all)))))

how many square killometers 1in the us? = answer (area 1 (countryid('usa')))

o1
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GeoQuery

» Input: question related to USA geography

» Output: query that can be executed against a database

what state has the largest city? = answer (state(loc 1 (largest(city(all)))))

how many square killometers 1in the us? = answer (area 1 (countryid('usa')))

SCAN : IID

Random split of the data
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DATASETS

GeoQuery

» Input: question related to USA geography

» Output: query that can be executed against a database

what state has the largest city? = answer (state(loc 1 (largest(city(all)))))

how many square killometers 1in the us? = answer (area 1 (countryid('usa')))

SCAN : IID

Random split of the data

SCAN : Template

All sentences that shares the same semantic template are used only for training or only for testing.

name the rivers 1n arkansas
name all the rivers in colorado
name all the rivers i1n colorado
rivers 1n new york °?

what are all the rivers 1n texas ?

o1



DATASETS

GeoQuery

» Input: question related to USA geography

» Output: query that can be executed against a database

what state has the largest city? = answer (state(loc 1 (largest(city(all)))))

how many square killometers 1in the us? = answer (area 1 (countryid('usa')))

SCAN : IID

Random split of the data

SCAN : Template

All sentences that shares the same semantic template are used only for training or only for testing.

SCAN : Length

Test sentences are (in average) longer than train sentences

Train Test
> sentence length: min=4 / max=13 / mean=7.5 » sentence length: min=7 / max=18 / mean=10.5
» program length: min=1 / max=4 / mean=3.1 » program length: min=2 / max=9 / mean=>5.2

o1



DATASETS

GeoQuery

» Input: question related to USA geography

» Output: query that can be executed against a database

what state has the largest city? = answer (state(loc 1(largest(city(all)))))

how many square kilometers 1n the us? = answer (area 1 (countryid('usa')))

SCAN : IID

Random split of the data

SCAN : Template

All sentences that shares the same semantic template are used only for training or only for testing.

SCAN : Length

Test sentences are (in average) longer than train sentences

train dev test
11D 540 00 280
Template 544 60 276

Length 540 60 280 51



DATASETS

> Input: question related to objects in a picture

» Output: query that can be executed against a database

Are there any shiny objects that have the same color as the matte block?

= exlst (filter (metal, relate att eg(color,filter (rubber, cube,scene()))))

92



DATASETS

> Input: question related to objects in a picture

» Output: query that can be executed against a database

Are there any shiny objects that have the same color as the matte block?

= exlst (filter (metal, relate att eg(color,filter (rubber, cube,scene()))))

SCAN : IID

Random split of the data
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DATASETS

> Input: question related to objects in a picture

» Output: query that can be executed against a database

Are there any shiny objects that have the same color as the matte block?

= exlst (filter (metal, relate att eg(color,filter (rubber, cube,scene()))))

SCAN : IID

Random split of the data

SCAN : Closure

» Questions in Clevr are generated from 80 templates

» Questions in Closure are generated from 7 new templates

92



DATASETS

> Input: question related to objects in a picture

» Output: query that can be executed against a database

Are there any shiny objects that have the same color as the matte block?

= exist(filter (metal, relate att eg(color,filter (rubber, cube, scene()))))

SCAN : IID

Random split of the data

SCAN : Closure

» Questions in Clevr are generated from 80 templates

» Questions in Closure are generated from 7 new templates

train dev test

11D 094 0689 5 000 149 991

Closure 694 689 5 000 25 200 52



EXPERIMENTAL RESULTS

SCAN GEOQUERY CLEVR
IlD RIGHT ARIGHT IlD TEMPLATE LENGTH IlD CLOSURE

Baselines (denotation accuracy only)

SEQ2SEQ 99.9 11.6 0 78.5 46.0 24.3 100 59.5
+ ELMoO 100 54.9 41.6 79.3 50.0 25.7 100 64.2
BERT2SEQ 100 77.7 95.3 81.1 49.6 26.1 100 56.4
GRAMMAR 100 0.0 4.2 72.1 54.0 24.6 100 51.3
BART 100 50.5 100 87.1 67.0 19.3 100 51.5
SPANBASEDSP 100 100 100 86.1 82.2 63.6 96.7 98.8
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EXPERIMENTAL RESULTS

SCAN GEOQUERY CLEVR

IID RIGHT ARIGHT IID TEMPLATE LENGTH IID CLOSURE
Baselines (denotation accuracy only)
SEQ2SEQ 99.9 11.6 0 78.5 46.0 24.3 100 59.5
+ ELMo 100 54.9 41.6 79.3 50.0 25.7 100 64.2
BERT2SEQ 100 77.7 95.3 81.1 49.6 26.1 100 56.4
GRAMMAR 100 0.0 4.2 72.1 54.0 24.6 100 51.3
BART 100 50.5 100 87.1 67.0 19.3 100 51.5
SPANBASEDSP 100 100 100 86.1 82.2 63.6 96.7 98.8
Our approach
Denotation accuracy 100 100 100 92.9 89.9 74.9 100 99.6
l, Corrected executor 91.8 88.7 74.5
Exact match 100 100 100 90.7 86.2 69.3 100 99.6
L, w/o CPLEX heuristic 100 100 100 90.0 83.0 67.5 100 98.0

Neural network

BERT-base + BiLSTM + Biaftine (details in the appendix of the paper)
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TOKEN-SEPARABLE LOSS FUNCTIONS

Related publication

On the inconsistency of separable losses for structured prediction
Caio Corro
EACL 2023

54



LOSS FUNCTIONS AND BAYES CONSISTENCY

Motivations

We approximate the log-partition function in the loss,

how does this impact the solution of the training problem?
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LOSS FUNCTIONS AND BAYES CONSISTENCY

Motivations

We approximate the log-partition function in the loss,

how does this impact the solution of the training problem?

Simpler example: syntactic dependency parsing

» Compute the maximum spanning arborescence : (0 (nz) [Tarjan, 1977]

» Summing over all arborescences : O (I’l3) (via the matrix tree theorem, MTT)
> Numerically instable (matrix inversion) [Koo et al., 2007] [McDonald & Satta, 2007]
» Not very fast on GPU compared to simpler losses [Smith & Smith, 2007]

» Non-trivial to implement

( Very deep neural network )

T

They walk the dog.
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LOSS FUNCTIONS AND BAYES CONSISTENCY

Motivations

We approximate the log-partition function in the loss,

how does this impact the solution of the training problem?

Simpler example: syntactic dependency parsing

» Compute the maximum spanning arborescence : (0 (nz) [Tarjan, 1977]

» Summing over all arborescences : O (I’l3) (via the matrix tree theorem, MTT)
> Numerically instable (matrix inversion) [Koo et al., 2007] [McDonald & Satta, 2007]
» Not very fast on GPU compared to simpler losses [Smith & Smith, 2007]

» Non-trivial to implement

Head selection loss [Zhang et al., 2017]

As each word has exactly one head

=> one multi-class classification loss per word

(equivalent to log-partition approximation) ( Very deep neural network )

T

They walk the dog.

55



MULTICLASS CLASSIFICATION

Notations

> k : number of classes

> X : input space

> Y : output space, set of one-hot vectors of dimension k
> f: X > RN . scoring function

> ¥ R Y . prediction function, y(w) = arg maxy cy (W,y)

Rk

Input space Score space Output space 96



BAYES RISK MINIMIZATION

0-1 loss function

Returns 1 if the output will be incorrect for a given score vector

0 if y € arg max W),
K:kaY—HRJr f(w,y)z{ y s y€Y<y )
otherwise.
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BAYES RISK MINIMIZATION

0-1 loss function

Returns 1 if the output will be incorrect for a given score vector

0 if y € arg max W),
L”:[Rk><Y—>IRJr f(w,y)z{ y S y€Y<y )

otherwise.

Optimal Bayes risk

Given a set of scoring function E what is minimum average number of error we can obtain?

r = inf r(f) = inf E[Z(fx)y)] = EJ1-maxp(y|x) ]
feF fer yeY
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BAYES RISK MINIMIZATION

0-1 loss function

Returns 1 if the output will be incorrect for a given score vector

0 if y € arg max W),
L”:[Rk><Y—>IRJr f(w,y)z{ y S y€Y<y )

otherwise.

Optimal Bayes risk

Given a set of scoring function E what is minimum average number of error we can obtain?

r = inf r(f) = inf E[Z(fx)y)] = EJ1-maxp(y|x) ]
feF fer yeY
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BAYES RISK MINIMIZATION

0-1 loss function

Returns 1 if the output will be incorrect for a given score vector

0 if y € arg max W),
f:IkaY—>IR+ f(w,y)={ y S yEY<y )
1 otherwise.

Optimal Bayes risk

Given a set of scoring function F, what is minimum average number of error we can obtain?

r = inf r(f) = inf E[A(fx).y)] = E[1—maxp(y|x)]
feF feF yeYy

Bayes risk when we predict

the most probable output for
each input

57



BAYES RISK MINIMIZATION

0-1 loss function

Returns 1 if the output will be incorrect for a given score vector

0 if y € arg max W),
L”:[Rk><Y—>IRJr f(w,y)z{ y s y€Y<y )

otherwise.

Optimal Bayes risk

Given a set of scoring function E what is minimum average number of error we can obtain?

r = inf r(f) = inf E[Z(fx)y)] = EJ1-maxp(y|x) ]
feF fer yeY

Bayes risk minimization

> The 0-1 loss function is not convex in W
> The derivatives of the objective are null a.e.

> The problem is know to be intractable even in simple cases .



SURROGATE LOSSES

Motivations

We can not use the 0-1loss £ for training, therefore we want to use a surrogate loss £,

are solutions of the surrogate training problem optimal Bayes classifiers?

58



SURROGATE LOSSES

Motivations

We can not use the 0-1loss £ for training, therefore we want to use a surrogate loss £,

are solutions of the surrogate training problem optimal Bayes classifiers?

Surrogate risk

Given a set of scoring function F, what is minimum average number of error we can obtain?

7 = inf F(f) = inf Eg[ Z(fx),y)]
fer

fer
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SURROGATE LOSSES

Motivations

We can not use the 0-1loss £ for training, therefore we want to use a surrogate loss £,

are solutions of the surrogate training problem optimal Bayes classifiers?

Surrogate risk

Given a set of scoring function F, what is minimum average number of error we can obtain?

inf Ey,[ £(f(x),y) ]
fEF

7* = inf F(f)
feF

Bayes consistency

aa———d

A surrogate loss £ s said to be Bayes consistent / Fisher consistent / classification calibrated if:

f* e argminfeF ) = r(f*=r*
58



POINTWISE CONSISTENCY

Standard assumptions

> F is the set of all measurable mappings

> Infinite number of training datapoints (i.e. expectation over the "true" data distribution)

Pointwise setting

> Choose a datapoint X € X such that p(x) > 0
> Redefine the Bayes and surrogate risks as expectation over the conditional distribution p(y |x)

> Minimize over the score vector W € R* instead of over function set F, where W = f(x)

r¥ = infk r(w) = infk Eyxl £(W,y) 1 = I — max p(y|x)
weR weR yeYy

P o= inf F(w) = inf Eyl W,y ]
weER weR

99



NEGATIVE LOG-LIKELIHOOD

Negative log-likelihood loss

Z(wy) = —(wy) + log ) exp(w.y) = —(w,y) + c(W)
yeY

60



NEGATIVE LOG-LIKELIHOOD

Negative log-likelihood loss

Z(wy) = —(w.y) + log ) exp(w.y) = —(w.y) + c(w)
yeY
Surrogate risk
inf  F(w) = inf Eyul £(W,y)]

weRk weRFK

inf  Ey [ — (W, y) + c(w) ]

weRk

inf  — <W’ Ey|x[y] > + C(W)

weRF
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NEGATIVE LOG-LIKELIHOOD

Negative log-likelihood loss

Z(wy) = —(wy) + log ) exp(w.y) = —(w,y) + c(W)
yeY

Surrogate risk
inf  F(w) = inf Eyul Z(W,y) ]

weRk weRFK

= inf  Ey [ —(w,y) + c(w) ]

weRk
= inf —(w, Ey Lyl ) + c(w)
weRF
Optimality conditions
Let: » W be a minimizer of the problem above

> y® the one-hot vector for which yl(.i) =1

By first order optimality conditions:

L ((F L Byy)) + (W) =0

ow ; 60



NEGATIVE LOG-LIKELIHOOD

Negative log-likelihood loss

Z(wy) = —(wy) + log ) exp(w.y) = —(w,y) + c(W)
yeY

Surrogate risk
inf  F(w) = inf Eyul Z(W,y) ]

weRk weRFK

= inf  Ey [ —(w,y) + c(w) ]

weRk

= inf  —(w, Ey,[y] ) + c(w)

weRF
Optimality conditions
Let: » W be a minimizer of the problem above

> y® the one-hot vector for which yl(.i) =1

By first order optimality conditions:

: ( (W, Eg,lyl ) + (A)) 0 = = " p(y"|x)
— | —\W, Ly c(W) | = —~ =
ow ; sty 2..€Xp W 60
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EXAMPLE

Optimality conditions

exp W, .
S (W B o)) =0 = =071
ow; Y Zj exp W
= W, =logp(y"|x)
Example

p(yV[x) = 0.7

p(y?|x) = 0.1

p(y®x) = 0.2

61



DEPENDENCY PARSING

Distribution over dependency trees

> Sentence length: 2 > No single root constraint
p(alx) =04 p(b|x) =0.3 p(c|x) =0.3
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DEPENDENCY PARSING

Distribution over dependency trees

> Sentence length: 2 > No single root constraint
palx) =04 p(b|x) =0.3 p(e|x) = 0.3

Arc factored scoring function

w(@) = wy_,; +w_,; w(b) = wy_; + Wy, W(C) = Wo_n + Wy,
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DEPENDENCY PARSING

Distribution over dependency trees

> Sentence length: 2 > No single root constraint
palx) =04 p(b|x) =0.3 p(e|x) = 0.3

Arc factored scoring function

w(@) = wy_,; +w_,; w(b) = wy_; + Wy, W(C) = Wo_n + Wy,

Optimality conditions
W (a) = logp(a| x)

W (b) =log p(b|x)

W (c) = log p(c|x)
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DEPENDENCY PARSING

Distribution over dependency trees

> Sentence length: 2 > No single root constraint
palx) =04 p(b|x) =0.3 p(e|x) = 0.3

Arc factored scoring function

w(@) = wy_,; +w_,; w(b) = wy_; + Wy, W(C) = Wo_n + Wy,

Optimality conditions

W (a) = logp(a|x) Wooi+ Wi, =logp(alx)

W (b) = log p(b|x) N Wooi+ Wooy =logp(b|x)

Ww(c) = log p(c|x) Wo—a + W2—>1 = log p(c|x) 42



DEPENDENCY PARSING

Distribution over dependency trees

> Sentence length: 2

¢ o e
pa|x) =04

> Single root

o« o o

p(b|x) = 0.3

Optimality conditions

WO—A + W1—>2 - lng(a | X)
WO—)I + T/V\O—>2 — lng(b | X)

/M70—>2 + WZ—)I - lng(C | X)

Head index

ple|x) = 0.3

Modifier index

63



TOKEN-SEPARABLE LOSS FUNCTIONS

Distribution over dependency trees

> Sentence length: 2 > Single root
¢ e e o« o e N
palx) =04 p(b|x)=0.3 p(c|x) = 0.3

Main idea

As each word has exactly one head, instead of minimizing the NLL over the dependency tree distribution,

we can minimize one multiclass classification NLL per word
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TOKEN-SEPARABLE LOSS FUNCTIONS

.......
“““““
.® .

p(b|x) = 0.3

FETLL LI TINN
. L]
. L2
* L4
o ‘e
*
.Q’ 4
*
*
*
‘.

p(c|x) =0.3

Focus on vertex 1

> Probability to have vertex O as head: p(a | X) + p(b | x)=044+03=0.7
> Probability to have vertex 2 as head:  p(c¢|x) = 0.3 5



TOKEN-SEPARABLE LOSS FUNCTIONS

0 1 2
o o e
palx) =04
e e
p(b|x) =0.3
T
p(c|x) =0.3

Focus on vertex 2

» Probability to have vertex O as head: pb|x)+pc]|x)=03+03=0.6
> Probability to have vertex 1 ashead: p(a|x) = 0.4 47



TOKEN-SEPARABLE LOSS FUNCTIONS

0 1 2
¢ o e
palx) =04
»(b|X) = 0.3 /
m /" |log03 |
p(c|x) =0.3

w@ = Wy, + Wi,, = log0.7 +log0.4

< 10g0.7+10g0.6 = Wy + Wy, = W(b) B



INTERMEDIATE CONCLUSION

Take home message

Token-separable losses are not necessarily Bayes consistent.

Other examples of separable losses

> Token level NLL for BIO tagging (ignores the fact that a I tag can not follow a O tag)
> Semantic parsing [Panupong et al., 2019]

> Discontinuous constituency parsing [Corro, 2020]

Should we care about loss function properties?

Machine learning is at the core of modern NLP models, so yes.

Should we care about Bayes consistency?

Clearly, separable losses work in practice, but:
> We need theory, "it works" is not good enough

> Previous work showed that Bayes consistency may be misleading as it ignore the structure
of the scoring function [Long and Servedio, 2013] 69
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CONCLUSION

Take home message 1

Structured prediction is not dead:

> seq-2-seq models are know to fail in several generalization settings (compositional, structural, ...)

» Beside syntactic parsing and alignment models for MT,

there are many NLP problems for which combinatorial algorithms have been understudied.
See for example [Corro, 2022] for NER

» Open question: how to embed "structural knowledge" in seq-2-seq models?

Take home message 2

> Loss functions are the cornestone of machine learning
> NLP has a lot of interesting learning problems were theory is missing

For other examples in NLB check: [Ma & Collins, 2018] [Effland & Collins, 2021]

(advertising) Book on discrete latent structure in neural networks

https://arxiv.org/abs/2301 .07473 Discrete Latent Structure
in Neural Networks

Vlad Niculae!, Caio F. Corro?, Nikita Nangia®,
Tsvetomila Mihaylova®® and André F. T. Martins®°:% 7
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