
GRAPH-BASED SEMANTIC PARSING, 
COMPOSITIONAL GENERALIZATION 

AND LOSS FUNCTIONS

Caio Corro

Université Paris-Saclay, LISN, CNRS

https://caio-corro.fr

￼1

https://caio-corro.fr

SEMANTIC PARSING

Related publication

On graph-based reentrancy-free semantic parsing

Alban Petit, Caio Corro

TACL 2023

￼2

SEMANTIC PARSING

￼3

I want to book a flight from Paris to Rome.

SELECT * FROM flight WHERE from = "paris" AND to = "rome"

⇒

SQL parsing

➤ Input: sentence

➤ Output: SQL query

Abstract Meaning Representation (AMR) parsing

➤ Input: sentence

➤ Output: graph

The boy want to go. ⇒

REENTRANCY-FREE SEMANTIC PARSING

￼4

exclude (river_all , traverse_2 (stateid('Tennesse')))

What rivers do not run through Tennesse?

Reentrancy-free semantic structures

➤ Predicates and entities are typed (in the same sense than in “typed programming languages")

➤ An argument can only be used once

Semantic structures look like a simple instruction in a functional programming language.

⇒
Is this realistic?

"estimating that there are only 0.3% queries that would require a more general [..] representation."

Task Oriented Parsing (TOP) dataset [Gupta et al., 2018]

COMPOSITIONAL GENERALIZATION
Compositionality: "the meaning of a complex expression is constructed from

the meanings of its constituent parts" (Kim & Linzen, 2020)

Compositional generalization: "Once a person learns the meaning of a new verb dax, he or
she can immediately understand the meaning of dax twice
or sing and dax." (Lake & Baroni, 2018)

￼5

GRAPH-BASED SEMANTIC PARSING

￼6

SYNTACTIC PARSING: CONSTITUENCY PARSING

They walk the dog

NP
VP

NP

S

Constituency parsing complexity with formal grammars

Context-free grammars

Well-nested LCFRS with a fan-out of 2

𝒪(n3)

In
cr

ea
si

ng
 

se
ar

ch
 s

pa
ce

[Sakai, 1961]

LCFRS with bounded fan-out NP-hard [Satta, 1992]

𝒪(n6)

𝒪(n2k+2)
[Gómez-Rodríguez et al., 2010]

Well-nested LCFRS with a fan-out of k, k > 2

What do?Ishould

WHNP NP

VP
SQ

SBARQ

￼7

SYNTACTIC PARSING: CONSTITUENCY PARSING

They walk the dog

NP
VP

NP

S

Constituency parsing complexity with formal grammars

Context-free grammars

Well-nested LCFRS with a fan-out of 2

𝒪(n3)

In
cr

ea
si

ng
 

se
ar

ch
 s

pa
ce

[Sakai, 1961]

LCFRS with bounded fan-out NP-hard [Satta, 1992]

𝒪(n6)

𝒪(n2k+2)
[Gómez-Rodríguez et al., 2010]

Well-nested LCFRS with a fan-out of k, k > 2

What do?Ishould

WHNP NP

VP
SQ

SBARQ

Constituency parsing complexity with span-based parsers

➤ Ensure the well-formedness of the resulting structure

➤ Do not enforce compliance of the syntactic content represented by the structure 

(e.g. a verbal phrase is not constrained to contain a verb)

Similar complexity than formal grammar parsers [Stern et al., 2017] [Corro, 2020] ￼7

SPAN-BASED SEMANTIC PARSING

￼8

[Herzig & Berant, 2021]

Outline

➤ Use a span-based constituency parser for semantic parsing 

(with extra valency constraints)

➤ Show that it is more robust to compositional generalization than seq-2-seq models

SPAN-BASED SEMANTIC PARSING

￼9

[Herzig & Berant, 2021]

Limitation

The parser allows only a limited form of discontinuity that can be parsed in [Corro, 2020]𝒪(n3)

The constituent in red is discontinuous and also has a discontinuous parent (red+green) 
=> outside the search space of the algorithm!

SYNTACTIC PARSING: DEPENDENCY PARSING

They walk the dog*

ROOT

SUBJ

OBJ

DET

Dependency parsing complexity (among many other algorithms!)

Projective

Well-nested + 2-bounded block degree

Well-nested + k-bounded block degree, k > 2

k-bounded block degree, k > 2

Unrestricted (a.k.a. non-projective)

𝒪(n3)

𝒪(n7)

NP-complete

𝒪(n2)

In
cr

ea
si

ng
 

se
ar

ch
 s

pa
ce

[McDonald et al., 2005]

[Eisner, 2000]

[Gómez-Rodríguez et al. 2009]

[Satta, 1992]

𝒪(n3+2k)

[Tarjan, 1977]

￼10

GRAPH-BASED PARSING

Very deep neural network

They walk the dog.

They walk the dog

Prediction with a graph-based parser

Assume an input sentence with n words:

1. Create a complete directed graph with n vertices

2. Weight all arcs using a neural network

3. Compute the maximum spanning arborescence of the graph

￼11

GRAPH-BASED SEMANTIC PARSING

exclude (river_all , traverse_2 (stateid('Tennesse')))

exclude

river_all traverse_2

stateid('Tennesse')

￼12

Intuition

The semantic program can be represented by its abstract syntax tree (AST)

=> just predict the AST!

GRAPH-BASED SEMANTIC PARSING

exclude (river_all , traverse_2 (stateid('Tennesse')))

exclude

river_all traverse_2

stateid('Tennesse')

What rivers do not run through Tennesse?

excluderiver_all traverse_2 stateid
￼12

Intuition

The semantic program can be represented by its abstract syntax tree (AST)

=> just predict the AST!

Graph-based prediction

Joint tagging (entity+predicate) and parsing (argument identification)

➤ Non-spanning structure (function words, etc)

➤ Valency constraints

➤ Non-projective structure

GRAPH-BASED SEMANTIC PARSING

￼13

Semantic grammar

A semantic grammar is a tuple where:

➤ is a set of predicates and entities (set of tags)

➤ is a set of type

➤ is a typing function that assigns a type to each tag

➤ is a valency function that assigns the numbers of expected arguments of a given type

E
𝒢 = ⟨ E, T, ftype, fargs ⟩

T

ftype : E → T

fargs : E × T → ℕ

AST recognition

A labeled graph is a valid AST if and only if it can be recognized by the grammar

exclude

river_all traverse_2

stateid('Tennesse')

𝒢

GRAPH-BASED SEMANTIC PARSING

￼14

Example

E = {exclude, river_all, traverse_1, traverse_2, state_id, . . . }

exclude

river_all traverse_2

stateid('Tennesse')

T = {river, state, . . . }

GRAPH-BASED SEMANTIC PARSING

￼14

Example

E = {exclude, river_all, traverse_1, traverse_2, state_id, . . . }

exclude

river_all traverse_2

stateid('Tennesse')

T = {river, state, . . . }

ftype(river_all) = river

ftype(state_id) = state

ftype(traverse_2) = river

ftype(exclude) = river

. . .

GRAPH-BASED SEMANTIC PARSING

￼14

Example

E = {exclude, river_all, traverse_1, traverse_2, state_id, . . . }

exclude

river_all traverse_2

stateid('Tennesse')

T = {river, state, . . . }

ftype(river_all) = river

ftype(state_id) = state

ftype(traverse_2) = river

ftype(exclude) = river

. . .

fargs(river_all, ...) = 0

fargs(state_id, ...) = 0
Entities

For all types

GRAPH-BASED SEMANTIC PARSING

￼14

Example

E = {exclude, river_all, traverse_1, traverse_2, state_id, . . . }

exclude

river_all traverse_2

stateid('Tennesse')

T = {river, state, . . . }

ftype(river_all) = river

ftype(state_id) = state

ftype(traverse_2) = river

ftype(exclude) = river

. . .

fargs(river_all, ...) = 0

fargs(state_id, ...) = 0

fargs(traverse_2, river) = 0

fargs(traverse_2, state) = 1

GRAPH-BASED SEMANTIC PARSING

￼14

Example

E = {exclude, river_all, traverse_1, traverse_2, state_id, . . . }

exclude

river_all traverse_2

stateid('Tennesse')

T = {river, state, . . . }

ftype(river_all) = river

ftype(state_id) = state

ftype(traverse_2) = river

ftype(exclude) = river

. . .

fargs(river_all, ...) = 0

fargs(state_id, ...) = 0

fargs(traverse_2, river) = 0

fargs(traverse_2, state) = 1

fargs(exclude, river) = 2

fargs(exclude, state) = 0

. . .

GRAPH-BASED SEMANTIC PARSING

￼15

Example

E = {exclude, river_all, traverse_1, traverse_2, state_id, . . . } T = {river, state, . . . }

ftype(river_all) = river

ftype(state_id) = state

ftype(traverse_2) = state

ftype(exclude) = river

. . .

fargs(river_all, ...) = 0

fargs(state_id, ...) = 0

fargs(traverse_2, river) = 0

fargs(traverse_2, state) = 1

fargs(exclude, river) = 2

fargs(exclude, state) = 0

exclude

river_all stateid('Tennesse')

Invalid AST 
for this grammar! . . .

REDUCTION TO A GRAPH PROBLEM

Which states do not border Texas?

exclude

next_to_2

stateid

state_all

area_1

￼16

All predicates
and entitiesRoot

Graph construction

1. For each word, create a cluster

2. In each cluster, create one vertex per element of T

3. Add all possible arcs (with weights from the neural network)

REDUCTION TO A GRAPH PROBLEM

Which states do not border Texas?

exclude

next_to_2

stateid

state_all

area_1

￼17

AST parsing

Compute the rooted arborescence of maximum weight such that:

➤ There is at most one incident vertex per cluster

➤ Valency constraints are satisfied

Predicate "exclude" is 
associated with word "not"

Dependencies assign
arguments

NP-HARDNESS

Issue

This problem is NP hard! :( 
(proof: by reduction of the maximum not-necessarily spanning arborescence problem)

￼18

AST parsing

Compute the rooted arborescence of maximum weight such that:

➤ There is at most one incident vertex per cluster

➤ Valency constraints are satisfied

NP-HARDNESS

Issue

This problem is NP hard! :( 
(proof: by reduction of the maximum not-necessarily spanning arborescence problem)

￼18

AST parsing

Compute the rooted arborescence of maximum weight such that:

➤ There is at most one incident vertex per cluster

➤ Valency constraints are satisfied

Approximate solver

1. Formulation as a integer linear program

2. Relaxation of the integrality constraint

3. Identifying the difficult constraints 

and add them as penalties in the objective

4. Custom optimization algorithm based on the problem structure 

(indicator function smoothing + Frank-Wolfe)

max
z∈[0,1]d

⟨z, ϕ⟩

s.t. z ∈ 𝒞(easy)

z ∈ 𝒞(hard)

Valency constraints!

ALGORITHME INTUITION

Which states do not border Texas?

exclude

next_to_2

stateid

state_all

area_1

∅

￼19

Problem reformulation

To simplify the algorithm, we add "empty entities":

➤ The root must have exactly one outgoing arc to a non-empty entity/predicate

➤ The "empty entities" cannot have outgoing arcs in a solution

ALGORITHME INTUITION

￼20
List states

Input sentence

ALGORITHME INTUITION

￼21
List states

state_all

loc_1

∅

Create vertices

In theory, we have all
predicates/entities

ALGORITHME INTUITION

￼22
List states

state_all

loc_1

∅

Create arcs

ALGORITHME INTUITION

￼23
List states

state_all

loc_1

∅
0 0

1

1

-1

0

1.5
1.5

-1
-1

-1

-1

-1
-1

0

-1

-1

-1

Create weights
using the neural

ALGORITHME INTUITION

￼24
List states

state_all

loc_1

∅
0 0

1-1

1+0

1.5-1
1.5+1

-1+0
-1-1

-1-1

-1-1

-1-1
-1+0

Add vertex weight
to incoming arcs

-1+0

-1+0

ALGORITHME INTUITION

￼25
List states

state_all

loc_1

∅
0 0

1-1

1+0

1.5-1
1.5+1

-1+0
-1-1

-1-1

-1-1

-1-1
-1+0

Interpret clusters
as nodes

-1+0

-1+0

ALGORITHME INTUITION

￼26
List states

state_all

loc_1

∅

1+0

1.5+1

-1+0

-1+0

Remove parallel arcs

ALGORITHME INTUITION

￼27
List states

state_all

loc_1

∅

1+0

1.5+1

-1+0

-1+0

Compute the maximum spanning
arborescence over clusters

ALGORITHME INTUITION

￼28
List states

state_all

loc_1

∅
0 0

1-1

1+0

1.5-1
1.5+1

-1+0
-1-1

-1-1

-1-1

-1-1
-1+0

-1+0

-1+0

Reconstruct full graph

ALGORITHME INTUITION

￼29
List states

state_all

loc_1

∅
0 0

1-1

1+0

1.5-1
1.5+1

-1+1
-1-1

-1-1

-1-1

-1-1
-1+0

Look at the
solution on the
original graph

-1+1

-1+0

ALGORITHME INTUITION

￼30
List states

state_all

loc_1

∅
0 0

1-1

1+0

1.5-1
1.5+1

-1+0
-1-1

-1-1

-1-1

-1-1
-1+0

loc_1 expects 
an argument! :(

-1+0

-1+0

ALGORITHME INTUITION

￼31
List states

state_all

loc_1

∅
0 0

1-1

1+0-3

1.5-1
1.5+1

-1+0
-1-1

-1-1

-1-1

-1-1
-1+0

Add penalties
-1+0+3

-1+0

ALGORITHME INTUITION

￼32
List states

state_all

loc_1

∅
0 0

1-1

1+0-3

1.5-1
1.5+1

-1+0
-1-1

-1-1

-1-1

-1-1
-1+0

-1+0+3

-1+0

ALGORITHME INTUITION

￼33
List states

state_all

loc_1

∅
0

1.5+1

-1+0

-1+0+3

ALGORITHME INTUITION

￼34
List states

state_all

loc_1

∅
0

1.5+1

-1+0

-1+0+3

ALGORITHME INTUITION

￼35
List states

state_all

loc_1

∅
0 0

1-1

1+0-3

1.5-1
1.5+1

-1+0
-1-1

-1-1

-1-1

-1-1
-1+0

-1+0+3

-1+0

ALGORITHME INTUITION

￼36
List states

state_all

loc_1

∅
0 0

1-1

1+0-3

1.5-1
1.5+1

-1+0
-1-1

-1-1

-1-1

-1-1
-1+0

-1+0+3

-1+0

ALGORITHME INTUITION

￼37

state_all

∅

We need to remove
empty entities

ALGORITHME INTUITION

￼38

state_all

This is a valid AST!

SUPERVISED LEARNING

￼39

NEGATIVE LOG-LIKELIHOOD

￼40

Notations

➤ Search space: directed graph where V is the set of vertices and is the set of arcs

➤ Vertex selection vector:

➤ Arc selection vector:

➤ Set of feasible solution (i.e. set of ASTs):

G = (V, A) A ⊆ V × V
x ∈ {0,1}V

y ∈ {0,1}A

(x, y) ∈ 𝒞

Weight vectors

➤ Vertex weights:

➤ Arc weights:

μ ∈ ℝV

ϕ ∈ ℝA

NEGATIVE LOG-LIKELIHOOD

￼40

Notations

➤ Search space: directed graph where V is the set of vertices and is the set of arcs

➤ Vertex selection vector:

➤ Arc selection vector:

➤ Set of feasible solution (i.e. set of ASTs):

G = (V, A) A ⊆ V × V
x ∈ {0,1}V

y ∈ {0,1}A

(x, y) ∈ 𝒞

Weight vectors

➤ Vertex weights:

➤ Arc weights:

μ ∈ ℝV

ϕ ∈ ℝA

where

Boltzmann distribution over ASTs

pμ,ϕ(x, y) = {exp(⟨μ, x⟩ + ⟨ϕ, y⟩ − c(μ, ϕ)) if (x, y) ∈ 𝒞
0 otherwise,

c(μ, ϕ) = log ∑
(x′￼,y′￼)∈𝒞

exp (⟨μ, x′￼⟩ + ⟨ϕ, y′￼⟩)

Log-partition function

NEGATIVE LOG-LIKELIHOOD

￼41

Boltzmann distribution over ASTs

pμ,ϕ(x, y) = {exp(⟨μ, x⟩ + ⟨ϕ, y⟩ − c(μ, ϕ)) if (x, y) ∈ 𝒞
0 otherwise,

c(μ, ϕ) = log ∑
(x′￼,y′￼)∈𝒞

exp (⟨μ, x′￼⟩ + ⟨ϕ, y′￼⟩)where

Log-partition function

ℓ(μ, ϕ; x, y) = − log pμ,ϕ(x, y)

Negative log-likelihood loss

= − ⟨μ, x⟩ − ⟨ϕ, y⟩ + c(μ, ϕ)

(probably) intractable!

! We cannot compute the loss function! :(

VARIATIONAL APPROXIMATION

￼42

Change of notation

z = [x
y] θ = [μ

ϕ] 𝒵 = { z(1), z(1), …, z(k) }

Set of feasible ASTs

VARIATIONAL APPROXIMATION

￼42

c(θ) = log ∑
z∈𝒵

exp ⟨θ, z⟩

Upper bound on the log-partition function

Change of notation

z = [x
y] θ = [μ

ϕ] 𝒵 = { z(1), z(1), …, z(k) }

Set of feasible ASTs

VARIATIONAL APPROXIMATION

￼42

c(θ) = log ∑
z∈𝒵

exp ⟨θ, z⟩

Upper bound on the log-partition function

U =

z(1)
1 , z(1)

1 , . . . , z(1)
d

z(2)
1 , z(2)

1 , . . . , z(2)
d

⋮
⋮

z(k)
1 , z(k)

1 , . . . , z(k)
d

Uθ =

⟨z(1), θ⟩
⟨z(2), θ⟩

⋮
⋮

⟨z(k), θ⟩

Each row is a
feasible AST

Weight of each AST

Change of notation

z = [x
y] θ = [μ

ϕ] 𝒵 = { z(1), z(1), …, z(k) }

Set of feasible ASTs

= max
p∈△k

⟨p, Uθ⟩ − ∑
i

pi log pi

=H[p]

Fenchel bi-conjugate

VARIATIONAL APPROXIMATION

￼42

= max
p∈△k

⟨p, Uθ⟩ − ∑
i

pi log pi

=H[p]

= max
p∈△k (p⊤U) θ + H[p]

c(θ) = log ∑
z∈𝒵

exp ⟨θ, z⟩

Upper bound on the log-partition function

Marginal distribution

Change of notation

z = [x
y] θ = [μ

ϕ] 𝒵 = { z(1), z(1), …, z(k) }

Set of feasible ASTs

VARIATIONAL APPROXIMATION

￼42

= max
p∈△k

⟨p, Uθ⟩ − ∑
i

pi log pi

=H[p]

= max
p∈△k (p⊤U) θ + H[p]

= max
z∈conv(𝒵)

⟨z, θ⟩ + Ω(z)

c(θ) = log ∑
z∈𝒵

exp ⟨θ, z⟩

Upper bound on the log-partition function

Implicitly defined so the two
problems are equivalent

Marginal polytope

Change of notation

z = [x
y] θ = [μ

ϕ] 𝒵 = { z(1), z(1), …, z(k) }

Set of feasible ASTs

VARIATIONAL APPROXIMATION

￼42

= max
p∈△k

⟨p, Uθ⟩ − ∑
i

pi log pi

=H[p]

= max
p∈△k (p⊤U) θ + H[p]

= max
z∈conv(𝒵)

⟨z, θ⟩ + Ω(z)

c(θ) = log ∑
z∈𝒵

exp ⟨θ, z⟩

Upper bound on the log-partition function

≤ max
z∈ℒ

⟨z, θ⟩ + H(z) Mean regularization

Outer approximation

Change of notation

z = [x
y] θ = [μ

ϕ] 𝒵 = { z(1), z(1), …, z(k) }

Set of feasible ASTs

VARIATIONAL APPROXIMATION

￼43

Upper bound on the log-partition function

We need to choose such that the bound is easy to compute.

Note that each feasible solution in satisfies the following conditions:

1. Each cluster has exactly one selected vertex

2. Each cluster (except the root) has exactly one incoming arc

c(θ) ≤ max
z∈ℒ

⟨z, θ⟩ + H(z) = c̃(θ)

ℒ

𝒞

Which states do not border Texas?

exclude

next_to_2

stateid

state_all

area_1

∅

VARIATIONAL APPROXIMATION

￼43

Upper bound on the log-partition function

We need to choose such that the bound is easy to compute.

Note that each feasible solution in satisfies the following conditions:

1. Each cluster has exactly one selected vertex

2. Each cluster (except the root) has exactly one incoming arc

c(θ) ≤ max
z∈ℒ

⟨z, θ⟩ + H(z) = c̃(θ)

ℒ

𝒞

Token-separable negative log-likelihood

Define as the convex hull of structures that satisfy (1) and (2),

Then:

is simply a sum of negative log-likelihood losses. For each cluster:

➤ One NLL over all vertices in the cluster

➤ One NLL over all incoming arcs in the cluster

ℓ(μ, ϕ; x, y) ≤ − ⟨μ, x⟩ − ⟨ϕ, y⟩ + c̃(μ, ϕ)

ℒ

WEAKLY-SUPERVISED LEARNING

￼44

DATASETS

exclude

river_all traverse_2

stateid('Tennesse')

What rivers do not run through Tennesse?

￼45

Annotation issue

In most dataset, the entities and predicates are not anchored!

Input:

Output:

Example

WEAKLY SUPERVISED LOSS

￼46

ℓ̃ (μ, ϕ; 𝒞*) = − log ∑
(x,y)∈𝒞*

pμ,ϕ(x, y) = − log ∑
(x,y)∈𝒞*

exp(⟨μ, x⟩ + ⟨ϕ, y⟩ − c(μ, ϕ))

= − log ∑
(x,y)∈𝒞*

exp(⟨μ, x⟩ + ⟨ϕ, y⟩) + c(μ, ϕ)

WEAKLY SUPERVISED LOSS

￼46

ℓ̃ (μ, ϕ; 𝒞*) = − log ∑
(x,y)∈𝒞*

pμ,ϕ(x, y) = − log ∑
(x,y)∈𝒞*

exp(⟨μ, x⟩ + ⟨ϕ, y⟩ − c(μ, ϕ))

= − log ∑
(x,y)∈𝒞*

exp(⟨μ, x⟩ + ⟨ϕ, y⟩) + c(μ, ϕ)

log ∑
(x,y)∈𝒞*

exp(⟨μ, x⟩ + ⟨ϕ, y⟩) = log ∑
(x,y)∈𝒞*

q(x, y)
q(x, y)

exp(⟨μ, x⟩ + ⟨ϕ, y⟩)

Lower bound on the first term

Proposal distribution

WEAKLY SUPERVISED LOSS

￼46

ℓ̃ (μ, ϕ; 𝒞*) = − log ∑
(x,y)∈𝒞*

pμ,ϕ(x, y) = − log ∑
(x,y)∈𝒞*

exp(⟨μ, x⟩ + ⟨ϕ, y⟩ − c(μ, ϕ))

= − log ∑
(x,y)∈𝒞*

exp(⟨μ, x⟩ + ⟨ϕ, y⟩) + c(μ, ϕ)

log ∑
(x,y)∈𝒞*

exp(⟨μ, x⟩ + ⟨ϕ, y⟩) = log ∑
(x,y)∈𝒞*

q(x, y)
q(x, y)

exp(⟨μ, x⟩ + ⟨ϕ, y⟩)

≥ ∑
(x,y)∈𝒞*

q(x, y) log
exp(⟨μ, x⟩ + ⟨ϕ, y⟩)

q(x, y)

Lower bound on the first term

Jensen's inequality

WEAKLY SUPERVISED LOSS

￼46

ℓ̃ (μ, ϕ; 𝒞*) = − log ∑
(x,y)∈𝒞*

pμ,ϕ(x, y) = − log ∑
(x,y)∈𝒞*

exp(⟨μ, x⟩ + ⟨ϕ, y⟩ − c(μ, ϕ))

= − log ∑
(x,y)∈𝒞*

exp(⟨μ, x⟩ + ⟨ϕ, y⟩) + c(μ, ϕ)

log ∑
(x,y)∈𝒞*

exp(⟨μ, x⟩ + ⟨ϕ, y⟩) = log ∑
(x,y)∈𝒞*

q(x, y)
q(x, y)

exp(⟨μ, x⟩ + ⟨ϕ, y⟩)

≥ ∑
(x,y)∈𝒞*

q(x, y) log
exp(⟨μ, x⟩ + ⟨ϕ, y⟩)

q(x, y)

= 𝔼q [⟨μ, x⟩ + ⟨ϕ, y⟩] + H[q]

Lower bound on the first term

As usual:

➤ The bound is tight if q is equal to the posterior distribution, "à la" EM

➤ We can instead use a proposal that put all the mass on single value, "à la" hard EM

WEAKLY SUPERVISED LOSS

￼47

ℓ̃ (μ, ϕ; 𝒞*) = − log ∑
(x,y)∈𝒞*

pμ,ϕ(x, y) ≤ 𝔼q [⟨μ, x⟩ + ⟨ϕ, y⟩] + H[q] + c̃(μ, ϕ)

Hard-EM like optimization

➤ (E step) Compute the best alignment between vertices in the AST and words in the sentence

➤ (M step) One gradient step on the neural network parameters

exclude

river_all traverse_2

stateid('Tennesse')

What rivers do not run through Tennesse?

NP-hardness

The E step is a NP-hard problem => approximate solver based on constraint relaxation 
+ dynamic programming

EXPERIMENTAL RESULTS

￼48

DATASETS
SCAN: Simplified version of the CommAI Navigation tasks

➤ Input : command

➤ Output : action sequence

[Lake & Baroni, 2018]

jump ⇒ JUMP
jump left ⇒ LTURN JUMP
jump around right ⇒ RTURN JUMP RTURN JUMP RTURN JUMP RTURN JUMP
turn left twice ⇒ LTURN LTURN
jump thrice ⇒ JUMP JUMP JUMP
jump opposite left and walk thrice ⇒ LTURN LTURN JUMP WALK WALK WALK
jump opposite left after walk around left

⇒ LTURN WALK LTURN WALK LTURN WALK LTURN WALK LTURN LTURN JUMP

SCAN-SP

Variant of scan where outputs are reformulated as functional programs

[Herzig & Berant, 2021]

run around left twice and jump left

⇒ i_and (i_twice (i_run (i_left , i_around)) , i_jump (i_left))
￼49

DATASETS
SCAN : IID

Random split of the data

￼50

DATASETS
SCAN : IID

Random split of the data

SCAN : Right

➤ The term "right" is never seen without a manner adverbs (around, opposite) during training

➤ The model must learn to generalize to the simplest usage of right 

(as seen during training for "left")

Train

jump left

turn left

jump around left

jump around right

turn opposite right

turn around left 
...

Test

jump right

turn right

...

￼50

DATASETS
SCAN : IID

Random split of the data

SCAN : Right

➤ The term "right" is never seen without a manner adverbs (around, opposite) during training

➤ The model must learn to generalize to the simplest usage of right 

(as seen during training for "left")

SCAN : Around right

➤ Test test set contains all exemple with "around right"

➤ The train set contains all other examples

Train

jump left

jump right

jump around left

jump opposite right

turn opposite right

turn around left 
...

Test

jump around right

turn around right

...

￼50

DATASETS
SCAN : IID

Random split of the data

train dev test

IID 13 383 3 345 4 182

Right 12 180 3 045 4 476

ARight 12 180 3 045 4 476

SCAN : Right

➤ The term "right" is never seen without a manner adverbs (around, opposite) during training

➤ The model must learn to generalize to the simplest usage of right 

(as seen during training for "left")

SCAN : Around right

➤ Test test set contains all exemple with "around right"

➤ The train set contains all other examples

￼50

DATASETS
GeoQuery

➤ Input: question related to USA geography

➤ Output: query that can be executed against a database

what state has the largest city? ⇒ answer(state(loc_1(largest(city(all)))))

how many square kilometers in the us? ⇒ answer(area_1(countryid('usa')))

￼51

DATASETS
GeoQuery

➤ Input: question related to USA geography

➤ Output: query that can be executed against a database

what state has the largest city? ⇒ answer(state(loc_1(largest(city(all)))))

how many square kilometers in the us? ⇒ answer(area_1(countryid('usa')))

SCAN : IID

Random split of the data

￼51

DATASETS
GeoQuery

➤ Input: question related to USA geography

➤ Output: query that can be executed against a database

what state has the largest city? ⇒ answer(state(loc_1(largest(city(all)))))

how many square kilometers in the us? ⇒ answer(area_1(countryid('usa')))

SCAN : IID

Random split of the data

SCAN : Template

All sentences that shares the same semantic template are used only for training or only for testing.

name the rivers in arkansas

name all the rivers in colorado

name all the rivers in colorado

rivers in new york ?

what are all the rivers in texas ?

...

￼51

DATASETS
GeoQuery

➤ Input: question related to USA geography

➤ Output: query that can be executed against a database

what state has the largest city? ⇒ answer(state(loc_1(largest(city(all)))))

how many square kilometers in the us? ⇒ answer(area_1(countryid('usa')))

SCAN : IID

Random split of the data

SCAN : Template

All sentences that shares the same semantic template are used only for training or only for testing.

SCAN : Length

Test sentences are (in average) longer than train sentences

Train

➤ sentence length: min=4 / max=13 / mean=7.5

➤ program length: min=1 / max=4 / mean=3.1

Test

➤ sentence length: min=7 / max=18 / mean=10.5

➤ program length: min=2 / max=9 / mean=5.2

￼51

DATASETS
GeoQuery

➤ Input: question related to USA geography

➤ Output: query that can be executed against a database

what state has the largest city? ⇒ answer(state(loc_1(largest(city(all)))))

how many square kilometers in the us? ⇒ answer(area_1(countryid('usa')))

SCAN : IID

Random split of the data

SCAN : Template

All sentences that shares the same semantic template are used only for training or only for testing.

SCAN : Length

Test sentences are (in average) longer than train sentences

train dev test

IID 540 60 280

Template 544 60 276

Length 540 60 280 ￼51

DATASETS
Clevr

➤ Input: question related to objects in a picture

➤ Output: query that can be executed against a database

Are there any shiny objects that have the same color as the matte block?

⇒ exist(filter(metal,relate_att_eq(color,filter(rubber,cube,scene()))))

￼52

DATASETS
Clevr

➤ Input: question related to objects in a picture

➤ Output: query that can be executed against a database

Are there any shiny objects that have the same color as the matte block?

⇒ exist(filter(metal,relate_att_eq(color,filter(rubber,cube,scene()))))

SCAN : IID

Random split of the data

￼52

DATASETS
Clevr

➤ Input: question related to objects in a picture

➤ Output: query that can be executed against a database

Are there any shiny objects that have the same color as the matte block?

⇒ exist(filter(metal,relate_att_eq(color,filter(rubber,cube,scene()))))

SCAN : IID

Random split of the data

SCAN : Closure

➤ Questions in Clevr are generated from 80 templates

➤ Questions in Closure are generated from 7 new templates

￼52

DATASETS
Clevr

➤ Input: question related to objects in a picture

➤ Output: query that can be executed against a database

Are there any shiny objects that have the same color as the matte block?

⇒ exist(filter(metal,relate_att_eq(color,filter(rubber,cube,scene()))))

SCAN : IID

Random split of the data

SCAN : Closure

➤ Questions in Clevr are generated from 80 templates

➤ Questions in Closure are generated from 7 new templates

train dev test

IID 694 689 5 000 149 991

Closure 694 689 5 000 25 200 ￼52

EXPERIMENTAL RESULTS

￼53

All baselines are from 
[Herzig & Berant, 2021]

EXPERIMENTAL RESULTS

￼53

Neural network

BERT-base + BiLSTM + Biaffine (details in the appendix of the paper)

TOKEN-SEPARABLE LOSS FUNCTIONS

Related publication

On the inconsistency of separable losses for structured prediction

Caio Corro

EACL 2023

￼54

LOSS FUNCTIONS AND BAYES CONSISTENCY
Motivations

We approximate the log-partition function in the loss,

how does this impact the solution of the training problem?

￼55

LOSS FUNCTIONS AND BAYES CONSISTENCY
Motivations

We approximate the log-partition function in the loss,

how does this impact the solution of the training problem?

Very deep neural network

They walk the dog.

Simpler example: syntactic dependency parsing

➤ Compute the maximum spanning arborescence :

➤ Summing over all arborescences : (via the matrix tree theorem, MTT)

➤ Numerically instable (matrix inversion)

➤ Not very fast on GPU compared to simpler losses

➤ Non-trivial to implement

𝒪(n3)
𝒪(n2) [Tarjan, 1977]

[Koo et al., 2007] [McDonald & Satta, 2007]

[Smith & Smith, 2007]

￼55

LOSS FUNCTIONS AND BAYES CONSISTENCY
Motivations

We approximate the log-partition function in the loss,

how does this impact the solution of the training problem?

Very deep neural network

They walk the dog.

Simpler example: syntactic dependency parsing

➤ Compute the maximum spanning arborescence :

➤ Summing over all arborescences : (via the matrix tree theorem, MTT)

➤ Numerically instable (matrix inversion)

➤ Not very fast on GPU compared to simpler losses

➤ Non-trivial to implement

𝒪(n3)
𝒪(n2) [Tarjan, 1977]

[Koo et al., 2007] [McDonald & Satta, 2007]

[Smith & Smith, 2007]

Head selection loss

As each word has exactly one head

=> one multi-class classification loss per word

(equivalent to log-partition approximation)

[Zhang et al., 2017]

￼55

MULTICLASS CLASSIFICATION

Notations

➤ : number of classes

➤ : input space

➤ : output space, set of one-hot vectors of dimension k

➤ : scoring function

➤ : prediction function,

f : X → ℝk

k
X
Y

ŷ(w) = arg maxy∈Y ⟨w, y⟩ŷ : ℝk → Y

Input space Output spaceScore space

ℝk YX

x
w

y

￼56

BAYES RISK MINIMIZATION
0-1 loss function

Returns 1 if the output will be incorrect for a given score vector

ℓ(w, y) = {0 if y ∈ arg maxy′￼∈Y ⟨y′￼, w⟩,

1 otherwise.
ℓ : ℝk × Y → ℝ+

￼57

BAYES RISK MINIMIZATION
0-1 loss function

Returns 1 if the output will be incorrect for a given score vector

ℓ(w, y) = {0 if y ∈ arg maxy′￼∈Y ⟨y′￼, w⟩,

1 otherwise.
ℓ : ℝk × Y → ℝ+

Optimal Bayes risk

Given a set of scoring function F, what is minimum average number of error we can obtain?

r* = inf
f∈F

r(f) = inf
f∈F

𝔼x,y[ℓ(f(x), y)] = 𝔼x[1 − max
y∈Y

p(y |x)]

Optimal Bayes risk

￼57

BAYES RISK MINIMIZATION
0-1 loss function

Returns 1 if the output will be incorrect for a given score vector

ℓ(w, y) = {0 if y ∈ arg maxy′￼∈Y ⟨y′￼, w⟩,

1 otherwise.
ℓ : ℝk × Y → ℝ+

Optimal Bayes risk

Given a set of scoring function F, what is minimum average number of error we can obtain?

r* = inf
f∈F

r(f) = inf
f∈F

𝔼x,y[ℓ(f(x), y)] = 𝔼x[1 − max
y∈Y

p(y |x)]

Bayes risk of f

￼57

BAYES RISK MINIMIZATION
0-1 loss function

Returns 1 if the output will be incorrect for a given score vector

ℓ(w, y) = {0 if y ∈ arg maxy′￼∈Y ⟨y′￼, w⟩,

1 otherwise.
ℓ : ℝk × Y → ℝ+

Optimal Bayes risk

Given a set of scoring function F, what is minimum average number of error we can obtain?

r* = inf
f∈F

r(f) = inf
f∈F

𝔼x,y[ℓ(f(x), y)] = 𝔼x[1 − max
y∈Y

p(y |x)]

Training objective!

￼57

BAYES RISK MINIMIZATION
0-1 loss function

Returns 1 if the output will be incorrect for a given score vector

ℓ(w, y) = {0 if y ∈ arg maxy′￼∈Y ⟨y′￼, w⟩,

1 otherwise.
ℓ : ℝk × Y → ℝ+

Optimal Bayes risk

Given a set of scoring function F, what is minimum average number of error we can obtain?

r* = inf
f∈F

r(f) = inf
f∈F

𝔼x,y[ℓ(f(x), y)] = 𝔼x[1 − max
y∈Y

p(y |x)]

Bayes risk when we predict
the most probable output for

each input

￼57

BAYES RISK MINIMIZATION
0-1 loss function

Returns 1 if the output will be incorrect for a given score vector

ℓ(w, y) = {0 if y ∈ arg maxy′￼∈Y ⟨y′￼, w⟩,

1 otherwise.
ℓ : ℝk × Y → ℝ+

Optimal Bayes risk

Given a set of scoring function F, what is minimum average number of error we can obtain?

r* = inf
f∈F

r(f) = inf
f∈F

𝔼x,y[ℓ(f(x), y)] = 𝔼x[1 − max
y∈Y

p(y |x)]

Bayes risk minimization

➤ The 0-1 loss function is not convex in

➤ The derivatives of the objective are null a.e.

➤ The problem is know to be intractable even in simple cases

w

￼57

SURROGATE LOSSES

Motivations

We can not use the 0-1 loss for training, therefore we want to use a surrogate loss ,

are solutions of the surrogate training problem optimal Bayes classifiers?

ℓ ℓ̃

￼58

SURROGATE LOSSES

Motivations

We can not use the 0-1 loss for training, therefore we want to use a surrogate loss ,

are solutions of the surrogate training problem optimal Bayes classifiers?

ℓ ℓ̃

Surrogate risk

Given a set of scoring function F, what is minimum average number of error we can obtain?

r̃* = inf
f∈F

r̃(f) = inf
f∈F

𝔼x,y[ℓ̃ (f(x), y)]

￼58

SURROGATE LOSSES

Motivations

We can not use the 0-1 loss for training, therefore we want to use a surrogate loss ,

are solutions of the surrogate training problem optimal Bayes classifiers?

ℓ ℓ̃

Bayes consistency

A surrogate loss is said to be Bayes consistent / Fisher consistent / classification calibrated if:ℓ̃

f* ∈ arg minf∈F r̃(f) ⟹ r(f*) = r*

Surrogate risk

Given a set of scoring function F, what is minimum average number of error we can obtain?

r̃* = inf
f∈F

r̃(f) = inf
f∈F

𝔼x,y[ℓ̃ (f(x), y)]

￼58

POINTWISE CONSISTENCY

Standard assumptions

➤ F is the set of all measurable mappings

➤ Infinite number of training datapoints (i.e. expectation over the "true" data distribution)

Pointwise setting

➤ Choose a datapoint such that

➤ Redefine the Bayes and surrogate risks as expectation over the conditional distribution

➤ Minimize over the score vector instead of over function set F, where

x ∈ X p(x) > 0
p(y |x)

w = f(x)w ∈ ℝk

r* = inf
w∈ℝk

r(w) = inf
w∈ℝk

𝔼y|x[ℓ(w, y)] = 1 − max
y∈Y

p(y |x)

r̃* = inf
w∈ℝk

r̃(w) = inf
w∈ℝk

𝔼y|x[ℓ̃ (w, y)]

￼59

NEGATIVE LOG-LIKELIHOOD
Negative log-likelihood loss

ℓ̃ (w, y) = − ⟨w, y⟩ + log ∑
y′￼∈Y

exp⟨w, y′￼⟩ = − ⟨w, y⟩ + c(w)

￼60

NEGATIVE LOG-LIKELIHOOD
Negative log-likelihood loss

ℓ̃ (w, y) = − ⟨w, y⟩ + log ∑
y′￼∈Y

exp⟨w, y′￼⟩ = − ⟨w, y⟩ + c(w)

Surrogate risk
inf

w∈ℝk
r̃(w) = inf

w∈ℝk
𝔼y|x[ℓ̃ (w, y)]

= inf
w∈ℝk

𝔼y|x[− ⟨w, y⟩ + c(w)]

= inf
w∈ℝk

− ⟨w, Ey|x[y] ⟩ + c(w)

￼60

NEGATIVE LOG-LIKELIHOOD
Negative log-likelihood loss

ℓ̃ (w, y) = − ⟨w, y⟩ + log ∑
y′￼∈Y

exp⟨w, y′￼⟩ = − ⟨w, y⟩ + c(w)

Surrogate risk
inf

w∈ℝk
r̃(w) = inf

w∈ℝk
𝔼y|x[ℓ̃ (w, y)]

= inf
w∈ℝk

𝔼y|x[− ⟨w, y⟩ + c(w)]

= inf
w∈ℝk

− ⟨w, Ey|x[y] ⟩ + c(w)

Optimality conditions

Let:

 

By first order optimality conditions:

∂
∂ ̂w i

(−⟨ ̂w , Ey|x[y] ⟩ + c(̂w)) = 0

➤ be a minimizer of the problem above

➤ the one-hot vector for which

̂w
y(i) y(i)

i = 1

￼60

NEGATIVE LOG-LIKELIHOOD
Negative log-likelihood loss

ℓ̃ (w, y) = − ⟨w, y⟩ + log ∑
y′￼∈Y

exp⟨w, y′￼⟩ = − ⟨w, y⟩ + c(w)

Surrogate risk
inf

w∈ℝk
r̃(w) = inf

w∈ℝk
𝔼y|x[ℓ̃ (w, y)]

= inf
w∈ℝk

𝔼y|x[− ⟨w, y⟩ + c(w)]

= inf
w∈ℝk

− ⟨w, Ey|x[y] ⟩ + c(w)

⟹
exp ̂w i

∑j exp ̂w j
= p(y(i) |x)

Optimality conditions

Let:

 

By first order optimality conditions:

∂
∂ ̂w i

(−⟨ ̂w , Ey|x[y] ⟩ + c(̂w)) = 0

➤ be a minimizer of the problem above

➤ the one-hot vector for which

̂w
y(i) y(i)

i = 1
Bayes consistent!

￼60

EXAMPLE

Optimality conditions

∂
∂ ̂w i

(−⟨ ̂w , Ey|x[y] ⟩ + c(̂w)) = 0 ⟹
exp ̂w i

∑j exp ̂w j
= p(y(i) |x)

p(y(1) |x) = 0.7

p(y(2) |x) = 0.1

p(y(3) |x) = 0.2

1
2
3

log 0.7
log 0.1
log 0.2

̂w

⟹ ̂w i = log p(y(i) |x)

Example

￼61

DEPENDENCY PARSING

p(b |x) = 0.3p(a |x) = 0.4 p(c |x) = 0.3

Distribution over dependency trees

➤ Sentence length: 2 ➤ No single root constraint

￼62

DEPENDENCY PARSING

p(b |x) = 0.3p(a |x) = 0.4 p(c |x) = 0.3

Distribution over dependency trees

➤ Sentence length: 2 ➤ No single root constraint

w(a) = w0→1 + w1→2 w(b) = w0→1 + w0→2 w(c) = w0→2 + w2→1

Arc factored scoring function

￼62

DEPENDENCY PARSING

p(b |x) = 0.3p(a |x) = 0.4 p(c |x) = 0.3

Distribution over dependency trees

➤ Sentence length: 2 ➤ No single root constraint

w(a) = w0→1 + w1→2 w(b) = w0→1 + w0→2 w(c) = w0→2 + w2→1

Arc factored scoring function

̂w (a) = log p(a |x)

̂w (b) = log p(b |x)

̂w (c) = log p(c |x)

Optimality conditions

￼62

DEPENDENCY PARSING

p(b |x) = 0.3p(a |x) = 0.4 p(c |x) = 0.3

Distribution over dependency trees

➤ Sentence length: 2 ➤ No single root constraint

w(a) = w0→1 + w1→2 w(b) = w0→1 + w0→2 w(c) = w0→2 + w2→1

Arc factored scoring function

̂w (a) = log p(a |x)

̂w (b) = log p(b |x)

̂w (c) = log p(c |x)

Optimality conditions

̂w 0→1 + ̂w 1→2 = log p(a |x)

̂w 0→1 + ̂w 0→2 = log p(b |x)

̂w 0→2 + ̂w 2→1 = log p(c |x)

⇔
￼62

DEPENDENCY PARSING

0 1 2

0

1

2

log 0.4

log 0.30

0

̂w

Distribution over dependency trees

➤ Sentence length: 2 ➤ Single root

p(b |x) = 0.3p(a |x) = 0.4 p(c |x) = 0.3

Optimality conditions

̂w 0→1 + ̂w 1→2 = log p(a |x)

̂w 0→1 + ̂w 0→2 = log p(b |x)

̂w 0→2 + ̂w 2→1 = log p(c |x)

Head index

Modifier index

￼63

TOKEN-SEPARABLE LOSS FUNCTIONS
Distribution over dependency trees

➤ Sentence length: 2 ➤ Single root

p(b |x) = 0.3p(a |x) = 0.4 p(c |x) = 0.3

Main idea

As each word has exactly one head, instead of minimizing the NLL over the dependency tree distribution,

we can minimize one multiclass classification NLL per word

￼64

TOKEN-SEPARABLE LOSS FUNCTIONS

p(b |x) = 0.3

p(a |x) = 0.4

p(c |x) = 0.3

0 1 2

0 ? ?

1 ?

2 ?

0 1 2

̂w

￼65

TOKEN-SEPARABLE LOSS FUNCTIONS

p(b |x) = 0.3

p(a |x) = 0.4

p(c |x) = 0.3

0 1 2

0 ?

1 ?

2

0 1 2

log 0.7

log 0.3

Focus on vertex 1

➤ Probability to have vertex 0 as head:

➤ Probability to have vertex 2 as head:

p(a |x) + p(b |x) = 0.4 + 0.3 = 0.7
p(c |x) = 0.3

̂w

￼66

TOKEN-SEPARABLE LOSS FUNCTIONS

0 1 2

0

1

2

p(b |x) = 0.3

p(a |x) = 0.4

p(c |x) = 0.3

0 1 2

Focus on vertex 2

➤ Probability to have vertex 0 as head:

➤ Probability to have vertex 1 as head:

p(b |x) + p(c |x) = 0.3 + 0.3 = 0.6
p(a |x) = 0.4

log 0.6

log 0.4

log 0.7

log 0.3

̂w

￼67

TOKEN-SEPARABLE LOSS FUNCTIONS

p(b |x) = 0.3

p(a |x) = 0.4

p(c |x) = 0.3

0 1 2

0

1

2

0 1 2

̂w (a) = ̂w 0→1 + ̂w 1→2 = log 0.7 + log 0.4

log 0.7

log 0.3

log 0.6

log 0.4

< log 0.7 + log 0.6 = ̂w 0→1 + ̂w 0→2 = ̂w (b)

̂w

NOT Bayes consistent :(

￼68

INTERMEDIATE CONCLUSION

Should we care about loss function properties?

Machine learning is at the core of modern NLP models, so yes.

Should we care about Bayes consistency?

Clearly, separable losses work in practice, but:

➤ We need theory, "it works" is not good enough

➤ Previous work showed that Bayes consistency may be misleading as it ignore the structure 

of the scoring function

Other examples of separable losses

➤ Token level NLL for BIO tagging (ignores the fact that a I tag can not follow a O tag)

➤ Semantic parsing

➤ Discontinuous constituency parsing

[Panupong et al., 2019]
[Corro, 2020]

[Long and Servedio, 2013]

Take home message

Token-separable losses are not necessarily Bayes consistent.

￼69

CONCLUSION

￼70

CONCLUSION

(advertising) Book on discrete latent structure in neural networks

https://arxiv.org/abs/2301.07473

Take home message 2

➤ Loss functions are the cornestone of machine learning

➤ NLP has a lot of interesting learning problems were theory is missing

For other examples in NLP, check: [Effland & Collins, 2021][Ma & Collins, 2018]

Take home message 1

Structured prediction is not dead:

➤ seq-2-seq models are know to fail in several generalization settings (compositional, structural, ...)

➤ Beside syntactic parsing and alignment models for MT, 

there are many NLP problems for which combinatorial algorithms have been understudied. 
See for example for NER

➤ Open question: how to embed "structural knowledge" in seq-2-seq models?

[Corro, 2022]

obvious
exaggeration :)

￼71

https://arxiv.org/abs/2301.07473

